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P R E F A C E  TO THE  
A M E R I C A N  E D I T I O N

This book is the first of a two-volume translation and adaptation of 
a well-known Russian problem book entitled Non-Elementary Problems 
in an Elementary Exposition * The first part of the original, Problems on 
Combinatorial Analysis and Probability Theory, appears as Volume I, and 
the second part, Problems from Various Branches of Mathematics, as 
Volume II. The authors, Akiva and Isaak Yaglom, are twin brothers, 
prominent both as mathematicians and as expositors, whose many excel
lent books have been exercising considerable influence on mathematics 
education in the Soviet Union.

This adaptation is designed for mathematics enthusiasts in the upper 
grades of high school and the early years of college, for mathematics 
instructors or teachers and for students in teachers’ colleges, and for all 
lovers of the discipline; it can also be used in problem seminars and 
mathematics clubs. Some of the problems in the book were originally 
discussed in sections of the School Mathematics Circle (for secondary 
school students) at Moscow State University; others were given at 
Moscow Mathematical Olympiads, the mass problem-solving contests 
held annually for mathematically gifted secondary school students.

The chief aim of the book is to acquaint the reader with a variety 
of new mathematical facts, ideas, and methods. The form of a problem 
book has been chosen to stimulate active, creative work on the materials 
presented.

The first volume contains 100 problems and detailed solutions to 
them. Although the problems differ greatly in formulation and method 
of solution, they all deal with a single branch of mathematics: combina
torial analysis. While little or no work on this subject is done in American 
high schools, no knowledge of mathematics beyond what is imparted 
in a good high school course is required for this book. The authors have 
tried to outline the elementary methods of combinatorial analysis with 
some completeness, however. Occasionally, when needed, additional 
explanation is given before the statement of a problem.

* Neelementarnye zadachi v elementarnom izlozhenii, Moscow: Gostekhizdat, 
1954.
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VI Preface

Thus the majority of the problems in this book and in its companion 
volume represent questions in higher (“non-elementary”) mathematics 
that can be solved with elementary mathematics. Most of the problems 
in this volume are not too difficult and resemble problems encountered 
in high school. The last three sections, however, contain some very 
difficult problems. Before going on to the problems, the reader should 
consult the “Suggestions for Using the Book.”

The book was translated by Professor James MeCawley, Jr., of the 
University of Chicago and edited and revised by Professor Basil Gordon 
of the University of California at Los Angeles.

Problem 85 was sent by the Russian authors for inclusion in the 
American edition, and appears here for the first time. A number of 
revisions have been made by the editor:

1. In order to make volume 1 self-contained, some problems were 
transferred to volume II. To replaee these, problems 1, 3, 12, and 
100 were added. Problem 12, in which the principle of inclusion 
and exclusion is presented, is intended to unify the treatment of 
several subsequent problems.

2. Some of the problems have been restated in order to illustrate the 
same ideas with smaller numbers.

3. The introductory remarks to section 1, 2, 6, and 8 have been 
rewritten so as to explain certain points with which American 
readers might not be familiar.

4. Adaptation of this book for American use has involved these 
customary changes: References to Russian money, sports, and 
so forth have been converted to their American equivalents; some 
changes in notation have been made, such as the introduction of 
the notation of set theory where appropriate; some comments 
dealing with personalities have been deleted; and Russian biblio
graphical references have been replaced by references to books 
in English, whenever possible.

The editor wishes to thank Professor E. G. Straus for his helpful 
suggestions made during the revision of the book. The Survey wishes to 
express its particular gratitude to Professor Gordon for the valuable 
improvements he has introduced.



S U G G E S T I O N S  
F OR U S I N G  T HE  B OO K

This book contains one hundred problems. The statements of the 
problems are given first, followed by a section giving complete solutions. 
Answers and hints are given at the end of the book. For most of the 
problems the reader is advised to find a solution by himself. After solving 
the problem, he should check his answer against the one given in the book. 
If the answers do not coincide, he should try to find his error; if they 
do, he should compare his solution with the one given in the solutions 
section. If he does not succeed in solving the problem alone, he should 
consult the hints in the back of the book (or the answer, which may also 
help him to arrive at a correct solution). If this is still no help, he should 
turn to the solution. It should be emphasized that an attempt at solving 
the problem is of great value even if it is unsuccessful: it helps the 
reader to penetrate to the essence of the problem and its difficulties, and 
thus to understand and to appreciate better the solution presented in 
the book.

But this is not the best way to proceed in all cases. The book con
tains many difficult problems, which are marked, according to their 
difficulty, by one, two, or three asterisks. Problems marked with two or 
three asterisks are often noteworthy achievements of outstanding mathe
maticians, and the reader can scarcely be expected to find their solutions 
entirely on his own. It is advisable, therefore, to turn straight to the hints 
in the case of the harder problems; even with their help a solution will, 
as a rule, present considerable difficulties.

The book can be regarded not only as a problem book, but also as a 
collection of mathematical propositions, on the whole more complex 
than those assembled in Hugo Steinhaus’s excellent book, Mathematical 
Snapshots (New York: Oxford University Press, 1960), and presented in 
the form of problems together with detailed solutions. If the book is 
used in this way, the solution to a problem may be read after its statement is 
clearly understood. Some parts of the book, in fact, are so written that 
this is the best way to approach them. Such, for example, are problems 
53 and 54, problems 83 and 84, and, in general, all problems marked with 
three asterisks. Sections VII and VIII could also be treated in this way.

vii



Suggestions for using the bookviii

The problems are most naturally solved in the order in which they 
occur. But the reader can safely omit a section he does not find interesting. 
There is, of course, no need to solve all the problems in one section before 
passing to the next.

This book can well be used as a text for a school or undergraduate 
mathematics club studying combinatorial analysis and its applications to 
probability theory. In this case the additional literature cited in the text 
will be of value. While the easier problems could be solved by the partic- 
pants alone, the harder ones should be regarded as “theory.” Their 
solutions might be studied from the book and expounded at the meetings of 
the club.

INDEX OF PROBLEMS GIVEN
IN THE MOSCOW MATHEMATICAL OLYMPIADS

The Olympiads are conducted in two rounds: the first is an elimination 
round, and the second is the core of the competition.

Olympiads Round I Round II Olympiads Round I Round II

For 7th and 8th graders For 9th and 10th graders

VI (1940) — 16, 35a I (1935) — 6, 27
VIII (1945) — 62a I I (1936) — 17
X (1947) 20 — 111 (1937) — 47
XIII (1950) — 541 IV (1938) 2 13a, 45a

V (1939) — 45b2
V I(1940) 4 15
VIII (1945) — 62b
X (1947) 49a —
XI (1948) — 26
XII (1949) — 91a

1 For n = 10.
2 For n =  5.
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PROBLEMS

The problems in this volume are related by the fact that in nearly all of 
them we are required to answer a question of “how many?” or “in how 
many ways?” Such problems are called combinatorial, as they are 
exercises in calculating the number of different combinations of various 
objects. The branch of mathematics which deals with such problems is 
called combinatorial analysis.

In the solutions to many of the problems, the following notation is 
used. Let n and k be integers such that 0 ^  k ^  n. Put

/« \ _  n\ n(n -- l)(n — 2) • • ■ (n — k +  1)
W  ~~ k \(n  - k) \ ~~ k\

The symbol may be read as “the binomial coefficient n over k " .

(Indeed these numbers occur as coefficients in the binomial theorem; in 
section V we will study them from that point of view.) For example, 

7\ 7*6*5
=  35. By virtue of the convention that 0! =  1, we have

3- 2- 1
n\ n\ . In

= ----- =  1, and similarly
0/ 0!n! J \n

is easily seen from the definition. 

We wish to point out here that

1. In general
n

n — k
as

is the number of ways in which k

objects can be selected from a given set of n objects. To begin with a 
concrete example, suppose we have a set S  of five elements, say S =  
{a,b,c,d,e},  and we wish to select a subset T of two elements from S 
(thus n = 5, k =  2). We can easily list all such sets T; they are {a,b}, 
{a,c}, {a,d}, {a,e}, {b ,c}, {b ,d}, {b,e}, {c ,d }, {c,e}, and {d,e}. Thus there are

/  5\ 5-4
altogether 10 possibilities for the selection, and indeed =  —  =  10. 

2-1
In the general case, where S has n elements and T has k elements, let 

us introduce the notation C„k for the number of such sets T. Thus



4 P R O B L E M S

our object will be to prove that Cnk = For this purpose it is conven

ient to introduce the notion of an ordered set, i.e., a set whose elements 
are written down in a definite order. Two ordered sets are said to be 
equal if and only if they consist of the same elements in the same order. 
Thus in the above example, the sets {a,b) and {b,a} are the same, but 
considered as ordered sets they are different. Now let T =  {a1; a2, . . . , ak} 
be a set of A elements, and let us calculate the number of ways in which 
these elements can be ordered. There are k possibilities for the first 
element. Once it has been chosen, there are k — 1 possibilities for the 
second element; once the first two elements have been chosen, there are 
k — 2 possibilities for the third element, etc. Hence there are altogether 
A(A — l)(/c — 2) * * • 2.1 =  k \ orderings. From this it follows that if P k 
is the number of ordered A-element subsets of S, then

(I) Pn — k ! C k.
But we can calculate Pnk directly by reasoning similar to the above. The 
first element of the ordered set T can be chosen from S  in n ways. Once it 
is chosen, the second element can be chosen in n — 1 ways, etc. Hence

Pn = n(n ~  0(« — 2) • • • (/i — A +  1),
where there are k factors on the right. From (1) we now obtain

k _  P /  n(n — 1) • • • (n — k + 1) (n\
" kl k\ \A /’

completing the proof. Note that when A =  0, we are allowing T to be the

empty set; thus the fact that 1 is not a paradox.

Because of the above result, the quantity
n
k,

= C k is often called

the number of combinations of n objects taken A: at a time. Similarly, P k 
is referred to as the number of permutations of n objects taken A at a time 
(the word permutation being an older term for ordered set).

I. INTRODUCTORY PROBLEMS

1. Three points in the plane are given, not all on the same straight line. 
How many lines can be drawn which are equidistant from these points?

2. Four points in space are given, not all in the same plane. How many 
planes can be drawn which are equidistant from these points?
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3. Four points in the plane arc given, not all on the same straight line, 
and not all on a circle. How many straight lines and circles can be drawn 
which are equidistant from these points? (By the distance from a point P 
to a circle c with center O we mean the length of the segment PQ, where 
Q is the point where the ray from O in the direction OP meets c.
4. Five points in space are given, not all in the same plane, and not all on 
the surface of a sphere. How many planes and spheres can be drawn 
which are equidistant from these points? (By the distance from a point/5 
to a sphere X with center O, we mean the length of the segment PQ, 
where Q is the point where the ray from O in the direction OP meets X.)
5. How many spheres are tangent to the planes of all the faces of a given 
tetrahedron T1
6. Six colors of paint are available. Each face of a cube is to be painted a 
different color. In how many different ways can this be done if two 
colorings are considered the same when one can be obtained from the 
other by rotating the cube?
7. In how many different ways can 33 boys be divided into 3 football 
teams of 11 boys each?
8. A store sells 11 different flavors of ice cream. In how many ways can a 
customer choose 6 ice cream cones, not necessarily of different flavors?
9. A group of 11 scientists are working on a secret project, the materials of 
which are kept in a safe. They want to be able to open the safe only when 
a majority of the group is present. Therefore the safe is provided with a 
number of different locks, and each scientist is given the keys to certain of 
these locks. How many locks are required, and how many keys must 
each scientist have ?
10. The integers from I to 1000 are written in order around a circle. 
Starting at 1, every fifteenth number is marked (that is, 1, 16, 31, etc.). 
This process is continued until a number is reached which has already 
been marked. How many unmarked numbers remain?
11a. Among the integers from 1 to 10,000,000,000 which are there more of: 
those in which the digit I occurs or those in which it does not occur?

b. If the integers from I to 222,222,222 are written down in succession, 
how many 0’s are written ?

II. THE REPRESENTATION OF INTEGERS AS 
SUMS AND PRODUCTS

In solving some of the problems of this section, the following notation 
will prove useful.
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The symbol [x] (read “the integral part of x”) denotes the greatest 
integer which is =gx. Thus, for example,

[f] =  1, [10.85] =  10, [5] =  5, [-8.2] =  - 9 ,  etc.

The symbol N(x) (read “nearest integer to x”) denotes the integer 
closest to x. Thus, for example, N(5.4) =  5, JV(8.73) =  9, N(6) =  6, 
N ( - 2.8) =  - 3 .

It is clear that N(x) is equal to [x] or [x] +  1 according as x — [x] is 
less than or greater than In the case when x — [x] =  N(x) could be 
taken to mean either [x] or [x] +  1; in this book we will make the conven
tion that N(x) =  [x] +  1 for such values of x. It can then be verified 
that N(x) = [2x] — [x].

If A and B are two sets, we denote by A U B (read “A union B" or 
“A cup B”) the set of all elements in A or B (or both). We call A U B the 
union or sum of A and B. In fig. 1, where A and B are represented by two

Fig. 1

discs, A U B is the entire shaded region. By A n  B (read “A intersect B” 
or “A cap B”) we mean the set of all elements that are in both A and B. 
In fig. 1 the set A n  B, which is called the intersection or product of A and 
B, is the doubly shaded region.

More generally, if Ax, . . . , Am are sets, we denote by Ax U • • • \J Am 
the set of all elements in at least one of the sets Au . . . , Am. By Ax O • • • 
n  Am we mean the set of all elements which are in all the sets Ax, . . . , Am. 
We call Ax U ■ ■ • U Am the union, and Ax n  • • • n  Am the intersection, of
A l, * • • > m■
12a. For any finite set S, let #{S) denote the number of elements of S 
(read “order of S ” or “cardinality of S ”). Prove that if A and B are 
finite sets, then

#(A  u  B )=  #(A) +  #(B) -  #(A  n  B).

b. Prove that if A, B, and C are finite sets, then

#{A  U B U C) =  #(A ) +  #(B) +  #(C) -  # (A  n  B)

-  # (A  n  C) -  #(B  n  C) +  #(A  n B  n C) .
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c.*  Prove that if A u A2, , A m are finite sets, then

# ( A i  U  A 2 U  • • • u  A J  =  # ( A D  +  # ( A 2) +  • • • +  # ( A J

# (A i  O  A2) # ( A 1 D A3) — • • •

T̂ i-Am-1 n  A m) +  # ( A i n  A2 Pi A3) 

+  # ( A 1 r\ A2 n  Al) +  • • •

+  ( - i ) m- 1 # ( A 1 n A t --- n A J .

The right-hand side of this formula is formed in the following way. 
First we have the terms # (A {), where 1 5S / m. Then we have the

1, . . . , m.) Then we have the terms # (A i n  Aj n  Ak), where 1 ^  /' <

A, n  Ak Pi A t), where 1 ^  / <  j  < k < 1 ^  m. We proceed in this way 
until finally the expression comes to an end when we reach the term 

#(^A1 n  A2 D ■ ■ ■ n  Am). Part a above is the case m = 2, and 
part b is the case m =  3.

This formula is often called the principle of inclusion and exclusion.

13a. How many positive integers less than 1000 are divisible neither by 5 
nor by 7 ?

b. How many of these numbers are divisible neither by 3 nor by 5 nor 
by 7?

14. * How many positive integers ^  1260 are relatively prime to 1260?

15. How many positive integers x 52 10,000 are such that the difference 
2X — x2 is not divisible by 7?

16. How many different pairs of integers x,y between 1 and 1000 are 
such that x2 +  y 2 is divisible by 49 ? Here the pairs (x,j) and (y,x) are not 
to be considered different.

17. * In how many ways can the number 1,000,000 be expressed as a 
product of three positive integers? Factorizations which differ only in the 
order of the factors are not to be considered different.

18. * How many divisors does the number 18,000 have (including 1 and 
18,000 itself)? Find the sum of all these divisors.

* See explanation of asterisks on page vii.

terms — # (A t n  Aj), where

since there are ways of selecting the two integers i ,j  from the numbers

Next come the terms — # (A { O
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19. How many pairs of positive integers A, B are there whose least 
common multiple is 126,000? Here (A,B) is to be considered the same as 
(B,A).

20. Find the coefficients of x17 and x18 in the expansion of (1 +  x5 +  x7)20.

21. In how many ways can a quarter be changed into dimes, nickels, and 
pennies ?

In problems 22-32, the letter n always denotes a positive integer.

22. In how many ways can n cents be put together out of pennies and 
nickels?

23. ** In how many ways can a total postage of n cents be put together 
using

a. 1-, 2-, and 3-cent stamps?
b. 1-, 2-, and 5-cent stamps?

24. ** In how many ways can a 100-dollar bill be changed into 1-, 2-, 5-, 
10-, 20-, and 50-dollar bills?

25. In how many ways can a number n be represented as a sum of two 
positive integers if representations which differ only in the order of the 
terms are considered to be the same?

26. How many solutions in integers does the inequality
|x | +  \y\ <  100

have? Here the solutions (x,j) and (y,x) are to be considered different 
when x ^  y .

27. In how many ways can the number n be written as a sum of three 
positive integers if representations differing in the order of the terms are 
considered to be different?

28a. In how many ways can the number n be represented as a sum of 3 
nonnegative integers x, y ,  z, if representations differing only in the order 
of the terms are not considered different?

b. How many such representations are there if x ,y ,  and z are required 
to be positive?

29. * How many positive integral solutions of the equation x +  y  +  z =  n 
satisfy the inequalities x ^  y  +  z , y  ^  x +  z, z ^  x+ j >?  Here solutions 
differing only in the order of the terms are to be considered as different.

30. ** How many incongruent triangles are there with perimeter n if the 
lengths of the sides are integers?
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31a.* How many different solutions in positive integers does the equation
*1 +  *2 +  *3 +  ' ' ‘ +  x m = n

have?
b. How many solutions in nonnegative integers does the equation 

x i +  x2 +  *3 +  ' ' ‘ +  xm — n
have ?

Remark. Problem 27 is a special case o f problem 31a (that corresponding 
to m =  3).

To conclude this set of problems we will present four general 
theorems dealing with the representation of numbers as sums of positive 
integers. The first three of them are by Leonhard Euler (1707-1783), one 
of the greatest mathematicians of the Eighteenth Century, who derived a 
great many important results in the most diverse branches of mathematics.1 
A series of similar theorems is contained in chapter XVI of Euler’s book 
Introductio in Analysin Infinitorum. Euler proves his theorems by the use of 
an interesting general method (the “method of generating functions’’); 
these proofs are different from the more elementary ones presented in this 
book as solutions to problems 32 and 33.

In problems 32 and 33 representations of a number n as a sum which 
differ only in the order of the terms are considered to be the same. Such 
representations are called partitions of n, and the terms are called parts.
32a.* Prove that the number of partitions of n into at most m parts is 
equal to the number of partitions of n whose parts are all 51 m. For 
example, if n — 5 and m =  3, the partitions of the first type are 5, 4 +  1, 
3 +  2, 3 +  1 +  1,2 +  2 + 1 ,  while those of the second type are 3 +  2, 
3 +  1 +  1,2 +  2 +  1,2 +  1 +  1 +  1, 1 +  1 +  1 +  1 +  1.

b. Prove that if n >  m(m +  l)/2, the number of partitions of n 
into m distinct parts is equal to the number of partitions of n — 
m(m +  l)/2 into at most m (not necessarily distinct) parts.
33a.* Prove that the number of partitions of any integer n into distinct 
parts is equal to the number of partitions of n into odd parts. For example, 
the partitions of 6 into distinct parts are 6, 5 + 1 ,  4 +  2, 3 +  2 + 1 ,  
while those into odd parts are 5 + l , 3  +  3,3 +  1 +  1 +  1,1 +  1 +  1 +
1 +  1 +  1.

b. Prove that the number of partitions of n in which no integer 
occurs more than k — 1 times as a part is equal to the number of partitions 
of n into parts not divisible by k  (Part a is the case k — 2). Thus if 
k =  3, n — 6, the partitions where no integer occurs more than twice 
among the parts are 6, 5 + 1 ,  4 +  2, 4 + 1  +  1, 3 +  3, 3 +  2 + 1 ,  
2 +  2 +  1 +  1. The partitions in which no part is divisible by 3 are

1 Some of Euler’s results are contained in problems 53b, 145, 164.
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5 +  1,4 +  2 , 4 + 1  +  1,2 +  2 +  2,2 +  2 + 1  +  1 , 2 + 1  +  1 +  M-
1, 1 +  1 +  1 +  1 +  1 +  1.

III. COMBINATORIAL PROBLEMS ON THE 
CHESSBOARD

The problems of this section involve various configurations of chess 
pieces on a chessboard. We will consider not only the usual chessboard of 
8 rows and 8 columns, but also an n X n chessboard, having n rows and 
n columns. To understand these problems it is necessary to know the 
following:

A rook controls all squares of its row and column, up to and including 
the first square occupied by another piece.

A bishop controls all squares of the diagonals on which it lies up to 
and including the first square occupied by another piece.

The queen controls all squares of the row, column, and diagonals on 
which it lies, up to and including the first square occupied by another 
piece.2

The king controls all squares adjacent to the square on which it lies. 
(See fig. 2a; the square on which the king lies is marked with a circle and 
the squares controlled by the king are marked with crosses.)

A knight controls those squares which can be reached by moving one 
square horizontally or vertically and one square diagonally away from the 
square occupied by the knight. (See fig. 2b; the square occupied by the

a. b.
Fig. 2

2 In accordance with what has been said, we count the square on which a rook, 
bishop, or queen lies as being controlled by it. In chess literature the square 
occupied by a piece is not considered to be controlled by that piece. To translate 
problems 34b, 35b, 36b, and 38 into the usual chess-player’s language, the expression 
“every square of the board” in the hypotheses would have to be changed to “every 
unoccupied square of the board.” (cf. hypothesis of problem 40.)
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knight is marked by a circle and the squares the knight controls are 
marked by crosses.)

No other facts about the game of chess are necessary to understand 
and solve these problems.
34a. What is the greatest number of rooks which can be placed on an 
n X n chessboard in such a way that none of them controls the square on 
which another lies? In how many different ways can this be done?

b. What is the smallest number of rooks which can be arranged on an 
n X n chessboard in such a way that every square of the board is controlled 
by at least one of them? In how many different ways can this be done?
35a. What is the greatest number of bishops which can be arranged on an 
ordinary chessboard (8 X 8) in such a way that none of them controls the 
square on which another lies? Solve the same problem for an n X n 
chessboard.

b. What is the smallest number of bishops which can be arranged on 
an 8 x 8 chessboard in such a way that every square of the board is 
controlled by at least one bishop? Solve the same problem for an n X n 
chessboard.
36. Prove that for even n the following numbers are perfect squares:

a. the number of different arrangements of bishops on an n X n 
chessboard such that no bishop controls a square on which another lies 
and the maximum possible number of bishops is used.

b. the number of different arrangements of bishops on an n X n 
chessboard such that every square is controlled by at least one bishop and 
the minimum number of bishops is used.
37a.* Prove that in an arrangement of bishops which satisfies the hypoth
eses of problem 36a, the bishops all lie on the outermost rows or columns 
of the board.

b.** Determine the number of arrangements of bishops on an n x n 
board which satisfy the hypotheses of problem 36a.
38. ** Determine the number of arrangements of bishops such that 
every square of the board is controlled by at least one bishop, and the 
smallest possible number of bishops is used:

a. On an 8 X 8 chessboard.
b. On a 10 X 10 chessboard.
c. On a 9 X 9 chessboard.
d. On an n x n chessboard.

39. What is the greatest number of kings which can be arranged in such a 
way that none of them lies on a square controlled by another

a. On an 8 X 8 chessboard ?
b. On an n x n chessboard ?
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40. What is the smallest number of kings which can be arranged in such a 
way that every unoccupied square is controlled by at least one of them:

a. On an 8 X 8 chessboard?
b. On an n x n chessboard ?

41. What is the greatest number of queens which can be arranged in such a 
way that no queen lies on a square controlled by another:

a. On an 8 X 8 chessboard?
b. *** On an n x n chessboard?

42a. What is the greatest number of knights which can be arranged on 
an 8 x 8 chessboard in such a way that none of them lies on a square 
controlled by another?

b.** Determine the number of different arrangements of knights on 
an 8 X 8 chessboard such that no knight controls the square on which 
another lies, and the greatest possible number of knights is used.

Some other combinatorial problems connected with arrangements of 
chess pieces can be found in L. Y. Okunev’s booklet, Combinatorial 
Problems on the Chessboard (ONTI, Moscow and Leningrad, 1935).

IV. GEO M ETRIC PRO BLEM S I NVOLVI NG 
COM BINATORIA L ANALYSIS

Some of the problems in this group are concerned with convex sets. 
A set in the plane or in three-dimensional space is called convex if the line 
segment joining any two of its points is contained in the set. For example, 
the interior of a circle or of a cube is convex. The set S' in fig. 3 is not 
convex, since the line segment joining A and B is not entirely contained 
in S.

Fig. 3

43a. Each of the vertices of the base of a triangle is connected by straight 
lines to n points on the side opposite it. Into how many parts do these 2n 
lines divide the interior of the triangle?
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b. Each of the three vertices of a triangle is joined by straight lines to n 
points on the opposite side of the triangle. Into how many parts do these 
3n lines divide the interior of the triangle if no three of them pass through 
the same point?

44. * What is the greatest number of parts into which a plane can be 
divided by:

a. n straight lines?
b. n circles?

45. ** What is the greatest number of parts into which three-dimensional 
space can be divided by:

a. n planes?
b. n spheres?

46. * In how many points do the diagonals of a convex «-gon meet if no 
three diagonals intersect inside the w-gon ?

47. * Into how many parts do the diagonals of a convex n-gon divide the 
interior of the n-gon if no three diagonals intersect?

48. Two rectangles are considered different if they have either different 
dimensions or a different location. How many different rectangles 
consisting of an integral number of squares can be drawn

a. On an 8 x 8 chessboard ?
b. On an n X n chessboard ?

49. How many of the rectangles in problem 48 are squares
a. On an 8 x 8 chessboard ?
b. On an n X n chessboard?

50. * Let K be a convex /j-gon no three of whose diagonals intersect. How 
many different triangles are there whose sides lie on either the sides or 
the diagonals of K ?

51. ** Cayley's problem.3 How many convex £-gons can be drawn, all of 
whose vertices are vertices of a given convex «-gon and all of whose sides 
are diagonals of the rz-gon ?

52. There are many ways in which a convex «-gon can be decomposed 
into triangles by diagonals which do not intersect inside the n-gon (see 
fig. 4, where two different ways of decomposing an octagon into triangles 
are illustrated).

a. Prove that the number of triangles obtained in such a decomposi
tion does not depend on the way the n-gon is divided, and find this number. 3

3 Arthur Cayley (1821-1895), an English mathematician.
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b. Prove that the number of diagonals involved in such a decomposi
tion does not depend on the way the w-gon is divided, and find this 
number.

53a.* In how many different ways can a convex octagon be decomposed 
into triangles by diagonals which do not intersect within the octagon?

b.*** Euler's problem. In how many ways can a convex n-gon be 
decomposed into triangles by diagonals which do not intersect inside the 
«-gon?
54.*** 2n points are marked on the circumference of a circle. In how 
many different ways can these points be joined in pairs by n chords which 
do not intersect within the circle?

Problem 54 will reoccur later in another connection (see problem 84a). 
At that point some related problems (84b and 84c) will be given; for more 
general results, see the remark at the end of the solution of problem 84c.

55a. A circle is divided into p  equal sectors, where p is a prime number. 
In how many different ways can these p sectors be colored with n given 
colors if two colorings are considered different only when neither can be 
obtained from the other by rotating the circle? (Note: It is not necessary 
that different sectors be of different colors or even that adjacent sectors 
be of different colors.)

b. Use the result of part a to prove the following theorem of Fermat4: 
If p  is a prime number, then nv — n is divisible by p  for any n.

56a.* The circumference of a circle is divided into p equal parts by the 
points Ax, A2, . . . , A v, where p  is an odd prime number. How many 
different self-intersecting /j-gons are there with these points as vertices if 
two />-gons are considered different only when neither of them can be

1 Pierre Fermat (1601-1665), a French mathematician, was one of the creators of 
analytic geometry; he made many important contributions to number theory.

For other proofs of Fermat’s theorem see, for example, L. E. Dickson, Introduction 
to the Theory of Numbers (U. of Chicago Press, 1929), p. 6 or G. H. Hardy and E. M. 
Wright, An Introduction to the Theory of Numbers (Oxford University Press, 1960), 
pp. 63-66.
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obtained from the other by rotating the circle? (A self-intersecting 
polygon is a polygon some of whose sides intersect at other points besides 
the vertices; see, for example, the self-intersecting pentagons illustrated 
in fig. 5.)

a. b.

Fig. 5

b. Use the result of part a to prove the following theorem of Wilson5: 
If p is a prime number, then (p — 1)! +  1 is divisible by p.

V. PROBLEMS ON THE BINOMIAL COEFFICIENTS

The following problems will illustrate certain properties of the 
numbers

nl
k\(n -  k)\

n{n -  1) • • • (n — k +  1) 
1 • 2- • • k

(0 ^  k ^  n) (1)

In algebra courses it is proved that these numbers are the coefficients in 
the expansion

< i + * M o ) +  ( ? ) * +  (a)** +  ••• +  (")*’

(the binomial theorem). In this connection the numbers are called

the binomial coefficients. Using the binomial theorem one can obtain

various relations involving the coefficients ; a direct proof of these

relations from the formula (1) usually turns out to be appreciably more 
complicated than a proof using the binomial theorem.

5 John Wilson (1741-1793), an English mathematician.
For other proofs of Wilson’s theorem, see Dickson, op. cit., p. 15 or Hardy and 

Wright, op. cit., pp. 68, 87.
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57. Use the binomial theorem to evaluate the following sums:

(k <  min (m, ri))

Some of the sums in this problem are encountered in another connection 
below, occasionally in a more general form. Thus, the sum of part 1 will be 
calculated by another method in the solution of problems 60a, 61c, and 72b. 
The result of part e will be generalized in the solution of problem 81c. The 
sum of part i will be determined by other means in the solution of problem 73b.
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58. Use the binomial theorem to evaluate the following sums (the dots 
at the end of these sums indicate that the series are continued up to the 
point where the lower number becomes greater than the upper number):

«• i s + ;  + s + 12)+■

e.

f.

1 + 5 + 9 + Q  +

M  + U + h ) +

+  1 15 +

(n ^  1) 

(» ^  2) 

(» ^  3)

/ 0 +  3 +  6 +  S) +

ll) + (4) + 7 + Q  + ( > i l )

I") + (5) + (s) + (n) + <"a2>
59. The factorial binomial theorem. Let a and h be any real numbers, and n 
a positive integer. Let us introduce the notation:

a{a — h)(a — 2h) • • • ( «  — (« — l)/i) =  an|A;

Thus, in particular, a n •0 =  a n, a 1 1 h — a. When n =  0we define a°^h =  1. 
Prove that with this notation the following formula holds:

(a +  b)n' h = an 'h +  1 hb11 h +  ^”) ain~2) 1 hb21 h +  ■ • • +  bnlh

This formula is called the factorial binomial theorem. It contains the 
ordinary binomial theorem as a special case (when h =  0).
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60. Use the factorial binomial theorem to evaluate the following sums:

n \h n \  ( n \ ( m
0 \ k  +  \ 1 / U -  1

m
k - 2

m
0

b. m \ In 
0 \k

in +  1 
1 +

m -f- 2 n
k - 2

' m +  k\ I n \
, k Mo)

Here k ^  min (m,n) in part a, and k ^  n in part b.
In proving relations connecting the binomial coefficients it is sometimes

Inhelpful to make use of the fact that is the number of combinations of n

objects taken A: at a time (that is, the number of A>element subsets of a 
given set of n elements). To make such proofs more intuitively clear it is 
convenient to make use of the following geometric diagram. Suppose that 
we live in a town whose streets run in two perpendicular directions (see fig. 
6, where all the streets of the town are represented in the form of horizontal

( 0, 0 )

Fig. 6

and vertical lines). We can number the horizontal lines with the numbers 
0, 1, 2, 3, • • • and do the same for the vertical lines. Then we can denote 
their intersections by pairs of coordinates (m,n), where m is the number of 
the “vertical” street which passes through the intersection and n is the 
number of the “horizontal” street (the intersections are denoted by dots in 
fig. 6). Suppose that we have to go from a house located at the inter
section (0,0) to a house located at the intersection (m,n). There will then be

 ̂ different shortest paths joining the two houses, for each of these

shortest paths is m +  n blocks long—m blocks in the horizontal direction 
and n blocks in the vertical direction. A path is described unambiguously 
by specifying which of the m +  n blocks are the n vertical ones. One can

choose which of the m +  n blocks are to be the n vertical ones in

ways. By classifying the shortest paths in various ways, we can obtain 
with the aid of this diagram some interesting relations involving the 
binomial coefficients.

m +  n 
n
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61a. Use the geometric scheme described above to prove that if n ^  m, 
then

b. Prove the following generalization of part a:

n +  1\ 
in J '

m !  [ o f  1 W  -  l / l  1

where n 3; m.
c. Evaluate the sum

n — 2 \ f k - \ - 2  
m — 2/ \ 2
— m\ ( k -f m 
0 ) \  m

+ ■ ■
k
m

IS) IT) + (7) (,-,) + (2) _ 2) + •' • + u) (o)-
(k S. min (m, n))

62a. A network of roads is shown in fig. 7 . 21000 people leave the point A. 
Half go in the direction L and half in the direction R. Having reached the

Fig. 7

first intersection, each group splits up, half going in the direction L and 
half in the direction R. The same thing happens at each subsequent 
intersection. How many people will reach each of the three leftmost 
intersections B2, and 5 3 of the thousandth row of intersections?

b. Solve this problem for all intersections of the thousandth row.

There are many more relations between the binomial coefficients. (See, 
for example, John Riordan, An Introduction to Combinatorial Analysis, Wiley, 
1958, p. 14 ff.) Those readers who have solved all the problems of this section 
carefully will be able to set up many more such exercises.

Consider the following triangular array of numbers:

1 1 1
1 2 3 2 1

1 3 6 7 6 3 1
1 4 10 16 19 16 10 4
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In the uppermost (0-th) row of this triangle there is a single 1, and the 
numbers in the subsequent rows are determined by the following rule: 
each number is the sum of the three entries closest to it in the preceding 
row (that is, the sum of the number directly above it and the numbers 
immediately to the right and left of that number). In the n-th row of this 
array there are 2n +  1 numbers; we will denote these numbers by Bn°, 
B 1 B 2 B 2n.n ? ±Jn > • • • > LJn
63.* Prove that

a. Bn° + Bn' + B n* + --- + B r  =  3";
b. Bn° - B n' + Bn* -------+  *„*"= 1;
c. (Bnr  +  (5„1)2 +  (5„2)2 +  • • • +  W " ) 2 =  B ^ \
After solving problem 63 the reader will be able to set up other 

relations involving the numbers Bnk.

VI. PROBLEMS ON COMPUTING PROBABILITIES

A very important class of combinatorial problems is concerned with 
the computation of probabilities. This section is devoted to some of 
these problems, and the following general remarks are intended to provide 
the background necessary for their solution.

In science and engineering we often deal with experiments (or 
observations or processes) which can give different results depending on 
circumstances which we either do not know or are unable to control. 
For example, when dice are thrown we cannot know beforehand what 
numbers will come up, since this depends on circumstances not entirely 
within our control (the details of the motion of the hand in throwing the 
dice, particulars about the surface on which the dice fall, etc.). Similar 
remarks apply to the tossing of a coin or the spinning of a roulette wheel.

Let A be a given outcome of such an experiment, and suppose that the 
experiment is performed n times. Then A will be the outcome a certain 
number nA of times, where 0 ^  h 4 ^  n. If the ratio nA/n approaches a 
limit p as n becomes indefinitely large, we say that p  is the a posteriori 
probability of the occurrence of A. Thus p represents the limiting value of 
the frequency with which A occurs in a series of trials of the experiment. 
We often writep  =  Pr{A}\ from the definition we see that 0 g  Pr{A} ^  1.

For example if the experiment consists of throwing a die, and if A is 
the outcome that a 5 turns up, then Pr{A) — £, since in a long series of 
throws the frequency with which a 5 turns up approaches If the 
experiment is to toss a coin, and if A denotes “heads,” then P{A} =  £. 
The probability of an absolute certainty is 1; thus one can say that the day
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after Saturday will be Sunday “with a probability of 1.” The probability 
of an impossible event is 0; thus the probability that a 100 will turn up 
when a die is thrown is 0.

Very often we want to determine the probability that the result of an 
experiment is in a given set of outcomes. For example we might wish to 
know the probability that an even number will turn up when a die is 
thrown. In this case the given set of outcomes consists of 2, 4, and 6. 
Such a set E is called an event; if the outcome of the experiment is in E, 
we say that the event E has occurred. The a posteriori probability of an 
event E is defined in the same way as for a single outcome; we perform the 
experiment n times, let nK denote the number of times that E occurred, and 
define Pr{E) to be the limit of nKfn  as n becomes indefinitely large. In 
the above example where E =  {2,4,6} we have Pr{E} =  £.

Let Ex and £2 be two events and denote by E1 U £2 (read “E1 or £2”) 
the event obtained by combining the outcomes of £ xand £2 into a single set. 
It follows from the definition of probability that if E1 and £2 are disjoint,
i.e. have no outcomes in common, then

£r{£x U £2} =  PriE,} + Pr{E2). (1)
For example in the experiment of throwing a die, let Ex =  {5} and 

£ 2 =  {2,4,6}. Then E1 and £ 2 are disjoint, Ex U £2 =  {2,4,5,6} and 
Pr{E± U £ J  =  * +  i  =  §.

In the case of tossing a coin or throwing a die, we feel intuitively that 
it is not necessary to carry out the experiment in order to determine the 
probabilities of various events. This is because of the symmetry which 
makes a head as likely as a tail and one face of a die as likely as any other. 
This idea leads naturally to the notion of a priori probability. If an 
experiment has a finite number N  of possible outcomes, and if there is 
some symmetry or other reason present to make us consider these outcomes 
as “equally likely,” then we assign the a priori probability l/7Vto each of 
them. Thus N  — 6 in the case of the die, and each face has an a priori 
probability of The a priori probability of an event £  is then defined as 
NEjN, where NE is the number of outcomes in the set £. When calculating 
this quantity it is often convenient to refer to the outcomes in £  as 
favorable and those not in £  as unfavorable. Then we can say that the a 
priori probability of £  is the number of favorable outcomes divided by the 
total number of outcomes. But it should be emphasized that this is true 
only when the N  outcomes of the experiment are equally likely.

In cases where the a priori probability of £  exists, it is equal to the a 
posteriori probability, for otherwise the assumption that the N  outcomes 
were equally likely was erroneous.6 All the problems in this section are to 
be worked using a priori probabilities.

6 For a more philosophical discussion of this point, see H. Reichenbach, The 
Theory o f Probability, University of California Press, Berkeley and Los Angeles, 1949.
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Now let E and F be any two events, and denote by E n  F (read 
“E and F ”) the event consisting of all outcomes which are in both E and F. 
For example, in the experiment of throwing a die, if E =  {1,2,4,6} and 
F = {2,3,5,6}, then E n  F =  {2,6}. In the case where Pr{F} >  0 we 
denote the quantity Pr{E n  F}/Pr{F} by Pr{E | F} and call it the conditional 
probability of E given F. To understand the meaning of this quantity 
consider the case of an experiment with N equally likely outcomes, NF of 
them in Fand NKnF of them in E n  F. Then

PrrE I = n k ^ *'IN = n k ^ f
n f /n  n f

Thus Pr{E | F} is the fraction of the outcomes of F which are also in E. 
If we select at random an outcome of F, Pr{E | F} is the probability that it 
will be in E.

For example if a die is thrown and if an even number is known to 
have come up, what is the probability that it was a multiple of 3? Here 
E = {3,6}, F =  {2,4,6}, E n  F = {6}, and so Pr{E \ F} = H i = £.

From the definition of Pr{E | F} we see that
Pr{E n  F} = Pr{F} Pr {E \ F).

In words: the probability of E C\ F is the probability of F times the 
conditional probability of E given F.

If two events E and Fare such that

Pr{E n  F} =  Pr{E) Pr{F},

we say they are independent of each other. To see the meaning of this 
concept, suppose Pr{F} > 0; then Pr{E | F} =  Pr{E n  F}jPr{F} =  
Pr{E}Pr{F}/Pr{F} = Pr{E}. Thus the conditional probability of E given 
F is the same as the (absolute) probability of E. In other words, the 
probability of the occurrence of E is not changed by a knowledge of 
whether of not F occurred.

For example, consider an experiment which consists of tossing a coin 
twice. Let E be the event that a head comes up on the first toss, and let F 
be the event that a head comes up on the second toss. Then E n  Fis the 
event that heads come up on both tosses. We have Pr{E n  F} =  I =  
Pr{E}Pr{F}, and so E and Fare independent. In most applications of this 
concept we know Pr{E} and Pr{F} and also that E and Fare independent; 
we then apply the formulaPr{F n  F} =  Pr{E}Pr{F} to evaluatePr{E n  F}. 

More generally we say that the events F1( F2, . . . , En are independent
if

Pr{EY n  F2 n  • • • n  En) =  P ^ F J P /^ F J  • • • Pr{En},

where Fx n  F2 n  • • • n  En consists of the outcomes which are in all of 
the events Eu F2, . . . , En.
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Now consider an experiment with N equally likely possible outcomes, 
and let E and F be any two events. Denote by NK, NF, NKkjF, and NFnF 
the numbers of outcomes in the events E, F, E U  F, and E n  F respectively 
Then

N k \j k  =  N k  - f -  N f  bfF n F

(see the solution to problem 12a). Dividing by N  we obtain 
Pr{E U  F] =  Pr{E} +  Pr{F} -  Pr{E n  F}.

This formula is often useful in computing probabilities; by applying 
problem 12c a similar formula can be derived for Pr{E1 U  E2 U  • ■ • u  En], 
where Ex U E<, U • • • U En denotes the event obtained by combining 
the outcomes of Ex, Ez, in a single set.7
64. In a certain town there are 10,000 bicycles, each of which is assigned a 
license number from 1 to 10,000 (no two bicycles receive the same number). 
What is the probability that the number on the first bicycle one encounters 
will not have any 8’s among its digits?
65a. Six cards bearing respectively the letters A, B, C, D, E, and F are 
shuffled thoroughly, and then the top four cards are turned face up 
(without changing the order in which they lay on top of the shuffled pack). 
What is the probability that they will spell out the word “DEAF” ?

b. The same process is performed on a set of cards consisting of three 
D’s, two O’s and one X. What is the probability that the top four cards 
will spell out the word “DODO” ?
66. * Ten slips of paper bearing the numbers 0, 1,2, 3, 4, 5, 6, 7, 8, and 9 
are put into a hat. Five slips are drawn at random and laid out in a row in 
the order in which they were drawn. What is the probability that the 
five-digit number thus formed will be divisible by 495?
67. Suppose that a boy remembers all but the last figure of his girl friend’s 
telephone number and decides to choose the last figure at random in an 
attempt to reach her. If he has only two dimes in his pocket, what is the 
probability that he will dial the right number before he runs out of money ?
68. For the purposes of this problem, suppose that the probability that a 
person’s birthday falls in any given month is 1/12. What is the probability 
that:

a. in a given group of 12 people, no two of them celebrate their 
birthdays in the same month?

b. the birthdays of 6 given people all fall in only two different
7 The above discussion of probability theory is of course only the briefest of 

introductions: for further information the reader is referred to the following books: 
W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 
1950; E. Parzen, Modern Probability Theory and its Applications, Wiley, New York, 
1960; H. Cramer, The Elements o f Probability Theory, Wiley, New York, 1955.
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months? (This means that they must not all be born in the same 
month.)
69. Nine passengers board a train consisting of three cars. Each passenger 
selects at random which car he will sit in. What is the probability that:

a. there will be three people in the first car ?
b. there will be three people in each car?
c. there will be two people in one car, three in another, and four in the 

remaining car?
70. A pack of ten cards, numbered from 1 to 10, is shuffled and dealt into 
two five-card hands.

a. What is the probability that the 9 and 10 are in the same hand?
b. What is the probability that the 8, 9 and 10 are all in the same hand ?
c. What is the probability that of the four highest cards, two are in 

one hand and two in the other?

71. Suppose A and B are two equally strong ping-pong players. Is it more 
probable that A will beat B in 3 games out of 4, or in 5 games out of 8?

72a. k  balls are selected at random from a box containing n white balls 
and m black ones. What is the probability that exactly r of the balls drawn 
are white ?

b. Apply the result of part a to evaluate the sum

(S) (T) + (") (fc -  ,) + (a) (fc -  2) + ■ ■ + (̂ ) ( 0 )•
Remark. For other methods o f determining this sum, see the solutions 

to problems 571, 60a, 61c.

73a. Banach's matchbox problem.8 A man buys two boxes of matches and 
puts them in his pocket. Every time he has to light a match, he selects at 
random one box or the other. After some time the man takes one of the 
boxes from his pocket, opens it, and finds that it is empty. (Note: the man 
must then have absentmindedly put the empty box back in his pocket 
after he had used the last match in it.) What is the probability that there 
are at that moment k  matches left in the other box if each box originally 
contained n matches? Here 0 fS. k n.

b. Use the result of part a to evaluate the sum

Remark. For another method o f determining this sum, see the solution 
to problem 57i.

74.* Two hunters A and B set out to hunt ducks. Each of them hits as 
B Stephen Banach (1892-1945), a Polish mathematician.
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often as he misses when shooting at ducks. Hunter A shoots at 50 ducks 
during the hunt and hunter B shoots at 51. What is the probability that 
B bags more ducks than A ?
75a. Two hunters see a fox and shoot at it simultaneously. Assume that 
each of the hunters averages one hit per three shots. What is the probabil
ity that at least one of the hunters will hit the fox?

b. Solve the same problem for the case of three hunters, assuming 
that the accuracy of each of the three hunters is the same as in part a.

c. Solve the same problem for the case of n hunters.
76. A hunter shoots from a distance of 100 yards at a fox running away 
from him; suppose that the probability that he hits it at this distance is 1 /2 
(that is, from a distance of 100 yards the hunter hits a running fox just as 
often as he misses). If he misses, the hunter reloads his rifle and shoots 
again, but in the time it takes to do this the fox runs 50 yards. If he misses 
a second time, he reloads the rifle and shoots a third (and last) time, the 
fox having meanwhile run another 50 yards. Under the hypothesis that 
the probability of a hit is inversely proportional to the square of the 
distance, determine the probability that the hunter succeeds in hitting the 
fox.
77. The problem of the four liars. It is known that each of four people,
A, B, C, and D, tells the truth in only one case out of three. Suppose that 
A makes a statement, and then D says that C says that B says that A was 
telling the truth. What is the probability that A was actually telling the 
truth?

Remark. This problem can also be formulated in the following way. A  
slip of paper is given to A, who marks it with either a plus or a minus sign; the 
probability o f his writing a plus is known to be 1/3. He then passes the slip to
B, who may either leave it alone or change the sign before passing it on to C. 
Next C  passes the slip to D  after perhaps changing the sign; finally D  passes 
it to an honest judge after perhaps changing the sign. The judge sees a plus 
sign on the slip. It is known that B, C, and D  each change the sign with prob
ability 2/3. What is the probability that A originally wrote a plus?

78a. In certain rural areas of Russia fortunes were once told in the follow
ing way. A girl would hold six long blades of grass in her hand with the 
ends protruding above and below; another girl would tie together the six 
upper ends in pairs and then tie together the six lower ends in pairs. 
If it turned out that the girl had thus tied the six blades of grass into a ring, 
this was supposed to indicate that she would get married within a year. 
What is the probability that a ring will be formed when the blades of 
grass are tied at random in this fashion?

b. Solve the same problem for the case of 2n blades of grass.
79a.* A jar contains 2n thoroughly mixed balls, n white and n black.
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What is the probability that each of n people drawing two balls blind
folded from the jar will draw balls of different colors? (The balls drawn 
are not replaced in the jar.)

b. Under the same conditions, what is the probability that each of 
the n people draws two balls of the same color?

80a.*** An absent-minded professor wrote n letters and sealed them in 
envelopes without writing the addresses on the envelopes. Having forgot
ten which letter he had put into which envelope, he wrote the n addresses 
on the envelopes at random. What is the probability that at least one of 
the letters was addressed correctly?

b. What limit does the probability of part a approach as n —► oo?

81a.** A train consists of n carriages. Each of p passengers selects at 
random the carriage in which he will ride. What is the probability that 
there will be at least one passenger in each carriage?

b. Under the hypotheses of part a, what is the probability that 
exactly r of the carriages will be occupied ?

c. Use the result of part a to evaluate the sum

where 1 ^  p ^  n.

Remark. Problem 81b is equivalent to the following problem, which is of 
interest to the physicist: a stream of p particles is caught by a system of n 
receptors of some particle-counting apparatus. Each particle is equally likely 
to hit any given receptor. What is the probability that particles will hit exactly 
r of the receptors?

The computation of the sum of problem 81c for the special case of p = 1 
was treated above in problem 57e.

82.** The twenty letters a, b, c, d, e, f, g, h, i, j, A, B, C, D, E, F, G, H, 
I, J are written down on separate slips of paper; the ten slips bearing the 
capital letters are shuffled and then arranged in random order in a 
circle; then the ten slips with small letters are shuffled and placed at 
random in the spaces between the first ten slips. What is the probability 
that no small letter will be adjacent to the corresponding capital letter?

83a.*** n +  m people are waiting in line at a box office; n of them have 
five-dollar bills and the other m have nothing smaller than ten-dollar bills. 
The tickets cost $5 each. When the box-office opens there is no money 
in the till. If each customer buys just one ticket, what is the probability 
that none of them will have to wait for change?

b. Solve the same problem under the assumption that initially there 
were p  five-dollar bills in the till.
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c. For the purposes of this problem, assume that there exist three- 
dollar bills, n +  m people are standing in line at a box-office; n of them 
have single dollars and the other m of them only have three-dollar bills. 
The tickets cost SI each and each person wants one ticket. When the box 
office opens there is no money in the till. What is the probability that 
none of the customers will have to wait for change?

Remark. Problems 83a-c, despite their artificial formulation, are o f great 
interest in practical applications; certain problems in physics and in the theory 
of statistical control o f production lead to such situations.

84a.*** Use the results of problem 83a to derive a new solution to 
problem 54.

b. 3n points are marked on the circumference of a circle. In how 
many ways can they be divided into n sets of three in such a way that no 
two of the inscribed triangles determined by these sets of three points 
intersect each other?

c. In how many ways can a convex 2«-gon be decomposed into 
quadrilaterals by drawing diagonals which do not meet inside the 2«-gon?9

85a. In a card game there are m +  n players and a banker who does not 
play but only collects and distributes money. At the beginning of the 
game there is no money in the bank. A pack consisting of m cards marked 
“win” and n cards marked “lose” is dealt, each player receiving one 
card. The first player then turns over his card; if it is a winner he collects 
a dollars from the bank, but if it is a loser he pays b dollars to the bank. 
Then the second player turns over his card, and so on. Assume that the 
total amount won is equal to the total amount lost; i.e., ma =  nb. 
Suppose also that m and n are relatively prime. What is the probability 
that throughout the game the banker always has enough money on hand 
to pay the winners?

b. What is the probability that at exactly k stages of the game there 
is a negative amount of money in the bank? Here k is an integer in the 
range

VII. EXPERIMENTS WITH INFINITELY MANY 
POSSIBLE OUTCOMES

In the preceding section we dealt with experiments having a finite 
number of equally likely possible outcomes. In that case the probability

9 It is not hard to see that a polygon with an odd number of sides can never be 
decomposed into quadrilaterals as required in the problem.
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of an event is the number of favorable outcomes divided by the total 
number of possible outcomes. There are however, cases in which neither 
the number of possible outcomes to the experiment nor the number of 
them in which the event takes place is finite, but nevertheless the notion 
of probability can be given a definite meaning which allows one to compute 
it with the aid of combinatorial considerations. Thus, for example, there 
are infinitely many positive integers. However, the question of determining 
the probability that a positive integer selected at random is divisible 
by 5 still makes sense; most people would say that this probability is 1/5, 
even though we have as yet given no definition applicable to this case.

To formulate such a definition, consider the following more general 
problem. Let there be given an infinite sequence of numbers

al> a2> a3y • • •

Suppose that the first TV of these numbers are written on TV slips of paper, 
the slips thoroughly mixed, and then one of them drawn at random. This 
experiment has TV equally probable outcomes; if we denote by q(N) the 
number of members of the sequence ax, a2, a3, . . . , ay which possess 
some given property, then the probability that the slip drawn bears a 
number possessing this property is q(N)/N.

Suppose that as N —■► oo the ratio q(N)/Napproaches a limit; in this 
case this limit is called the probability that a number selected at random 
from the entire sequence has the desired property.

N ote that this probability depends on the way in which the numbers are 
arranged in a sequence. Changing the order o f the numbers can change the 
value o f the probability. Example: consider the positive integers arranged in 
increasing order: 1, 2, 3, . . . Of the first TV o f these numbers, [/V/2] are even; 
as TV -*  co the ratio [TV/2]/TV approaches which means that the probability 
that any number selected at random is even equals 1/2. N ow  let the positive 
integers be arranged in the order 1, 3, 2, 5, 7, 4, 9, 1 1 , 6 , . . . ,  that is, the first 
two odd numbers, then the first even number, then the next two odd numbers, 
then the next even number, etc. Among the first TV o f these numbers, there 
are only [TV/3] even numbers, and as TV -> co the ratio [/V/3J/VV approaches the 
limit 1/3, thus making the probability that any number selected at random 
is even equal to 1/3. In the problems below, it is assumed that the positive 
integers are arranged in the order 1, 2, 3, . . . ; but always keep in mind that 
if they were arranged in a different order, a different result might be obtained.

If the sequence consists of the positive integers arranged in increas
ing order and the property in question is that of divisibility by 5, the 
above definition leads to a probability of 1/5. To see this, note first that 
q(N) — [N/5]. Now any number TV can be written in the form TV =  5q +  r, 
where q — [N/5] and r is the remainder upon division of TV by 5 (and thus
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equal to 0, 1, 2, 3, or 4). It follows from this that
[yV/5J q N — r 1 r

N ~  N ~  5N “  5 5N
and, since 0 s; r S  4,

.. [NI5] .. /I lim —-— =  lim 1- - _  1
/Y -* co N .V -m o \5 5 Nf 5

Thus when N  is a very large (but finite) positive integer, the probability 
that a number selected at random from the first N  positive integers will be 
divisible by 5 is very close to 1/5. The probability that the serial number 
on a one-dollar bill chosen at random will be divisible by 5 is nearly equal 
to 1/5 (since the total number of one-dollar bills in circulation is very 
great); it is not necessary to know the exact number of dollars in circula
tion. We expect the reader to make this approximation in problems 86-94 
below. The hypotheses of these problems may seem artificial, but there 
are problems of the same type whose solutions are of practical importance.
86. What is the probability that a positive integer selected at random is 
relatively prime to 6? That at least one of two integers selected at random 
is relatively prime to 6?
87a. What is the probability that the square of an integer selected at 
random will end with the digit 1 ? That the cube of an integer selected 
at random will end with the digits 11 ?

b. What is the probability that the final digit of the tenth power of a 
number selected at random is a 6? That the final digit of the twentieth 
power of a number selected at random is a 6?
88. What is the probability that when n is selected at random from the

positive integers greater than 7: a. I I is divisible by 7? b. I I is di
visible by 12? ' 7/
89. What is the probability that the final digit of 2", where n is a positive 
integer selected at random, is a 2 ? That the last two digits are 12?
90. * What is the probability that the first digit of 2" is a 1 ?
91a.*** Prove that 2” can begin with any sequence of digits.

b. Let M be any /:-digit number. What is the probability that the 
first k  digits of the number 2" represent the number M l  

Remark. Problem 90 is a special case of problem 91b.
92.** Let N be a positive integer, and let sy  be the probability that two 
integers a, b, chosen at random from the range 1 g  a, b N, are relatively 
prime. Prove that

lim 5 v =  5
\  oo

exists.



30 P R O B L E M S

93. Show that the infinite series

1 + - + — + — 
22 32 42

+  • • •

converges to the value 1 js, where s is the number defined in problem 92. 
Using this, compute s numerically to within 0.1.

94.** Prove that the probability that an integer is prime is 0. In other 
words prove that if n(N) denotes the number of primes sS N, then

lim
*V-+ oo

7t(N )

T =  o.

VIII. EXPERIMENTS WITH A CONTINUUM OF 
POSSIBLE OUTCOMES

To conclude this volume, we consider some more problems on com
puting probabilities, this time involving experiments whose possible 
outcomes can be represented by the points of a line segment, or of some 
plane figure, or solid body. In such cases one cannot speak of the number 
of outcomes in which a given event occurs; nevertheless, one can often 
define the probability of the event in a natural way and calculate it by 
geometrical considerations. The easiest way to explain how such com
putations are performed is through concrete examples.

L/2

M'-
U 4

-‘O N

Fig. 8

B

Example 1. A rod of length L is broken at a point chosen at random. 
What is the probability that the smaller of the two pieces will be of length 
greater than L/4?

The possible outcomes of the experiment correspond to the different 
points at which the rod can be broken, that is, the set of all possible 
outcomes to the experiment can be represented as the totality of all points 
on a segment AB of length L (fig. 8).

Now exactly what is meant by saying that the rod is broken at a 
point “chosen at random” ? If we stipulate that all points of AB have the 
same probability p of being chosen, then we must have p =  0, since there
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are infinitely many such points. This does not give sufficient information 
to calculate the probability required by the problem. What we must do 
is to associate to each interval CD on the line AB a number p(CD), the 
probability that the break point lies between C and D. Since p{CD) is 
to be interpreted as a probability, it must satisfy the inequalities

0 p(CD) ̂  1.
Since the break point is certain to be between A and B, we must have

p(AB) =  1.
If C, D, and E are three points on the line as in fig. 9 we will require

that
p(CE) =  p(CD) +  p{DE).

This requirement is a natural extension of property (1) on page 21. 
We can now define the phrase “at random” precisely; we will use this 
term to mean that the probability p{CD) depends only on the length of 
CD and not on its location on the rod.

A C D E B

Fig. 9

In this case we can write p(x) instead of p(CD), where x  denotes the 
length of the segment CD. The function p(x) is defined for all values of 
x  in the range 0 ^  x  ^  L. The above properties can now be written in 
the form

(1) 0 ^  p(x) ^  1
(2) p(L) =  1
(3) p(x + y ) =  p{x) +  p{y) if x + y  ^  L.
We will now show that there is only one function p(x) having these 

three properties, namely p(x) = x/L. We first note that property (3) can 
be generalized to

(4) p{xx +  *2 4----- +  xn) =  p (x j +  p(x2) + -------b p(xn)

if *i +  x2 +  • • • +  xn fs L.
For example, if n =  3, we can apply property (3) twice to obtain

p{xl +  x2 +  x3) =  />((*! +  x 2) +  x3)

=  p(x i +  *2) +  p(x3) = p(*i) +  p(x2) +  p(x3).
The general case follows readily by mathematical induction.

In (4) put Xj =  x2 =  • • • =  x n = L/n. Then x1 +  x2 +  • • • +  xn =  L, 
and so by (2),p(x1 +  • • • +  x„) =  1. Hence (4) becomes 1 =  np{Ljn), or
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p{Ljn) =  1 /«. Next suppose that m, n are positive integers with m n. 
By (4) we have

m terms

This means that p(x) =  x/L whenever x/L is a rational number. To deal 
with the case where x/L  is irrational, note first that if 0 x  ^  y  ik L, 
then

piy) =  p(x) +  p(y -  x) p{x),

since p(y — x) 0 by property (1). Thus the function p(x) is monotone 
non-decreasing. Now if x/L is irrational, and n is any positive integer, we 
can choose rational numbers ajL and bjL such that a tk x ^  b and such 
that bjL — ajL <  l/n. (This is because the rational numbers are every
where dense, so that any irrational number can be approximated arbitrarily 
closely by rational numbers.) We then obtain

-  =  p(a) g  p(x) ^  p(b) =

from which it follows that |/?(.x) — xjL\ < \jn. Since this holds for all n, 
we see that p(x) =  x/L.

Conversely, it is easily verified that the function p(x) — x/L actually 
satisfies (l)-(3).

Thus when the rod AB is broken at random, the probability that the 
break point lies in an interval CD is equal to the length of CD divided by 
the length of AB, i.e. the fraction of the total length contained in the 
interval CD.

To return to the original problem, we note that the length of the 
smaller of the pieces into which the rod is broken will be greater than 
L/4 if and only if the break point lies within the segment MN (see fig. 8) 
whose length is L/2, and whose endpoints lie at a distance of L/4 from the 
ends of the rod. Hence the required probability is (L/2)/L =  L

Example 2. A coin of diameter d is tossed on a tiled floor. The 
tiles of the floor are squares of width a > d. What is the probability that 
the coin will lie entirely within one of the squares (that is, that it will not 
cross any of the sides of a square)?

The possible outcomes of the experiment considered in this problem 
correspond to the various points at which the center of the coin can land.
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Since all the squares on the floor are congruent to each other, it will 
suffice to consider a single square. Let us restrict ourselves for the moment 
to the cases in which the center of the coin lands within the square under 
consideration. The set of all possible outcomes to the experiment can be 
represented by the totality of all points within a square ABCD of width a.

The term “at random” in the formulation of this problem is to be 
understood as meaning that the probability that the center of the coin 
will land in a given rectangle depends on the area of this rectangle and 
not on its location within the square ABCD. By a proof analogous to 
that given on pages 31-32, it can be shown that this implies that the 
probability of the center of the coin landing in any given rectangle is the

B

A

C

D

Fig. 10

ratio of the area of that rectangle to the area of the entire square ABCD. 
But it is easy to see that the coin will lie entirely within the square ABCD 
if and only if its center lands within the square MNPQ of width a — d 
whose center coincides with that of the square ABCD and whose sides 
are parallel to those of ABCD (fig. 10). It follows from this that the 
required probability is

area MNPQ _  (a — d)2 _  / dY
area ABCD a2 \ a)

Suppose that the floor consists of n squares. We have divided the 
outcomes into n classes: one for each square, consisting of the outcomes 
in which the coin’s center lands within that square. If it is equally probable 
that the center of the coin will land in any of the n squares and if the above 
argument is valid for each of the squares, then the probability of the coin 
lying entirely within a given square (1 /«)(1 — d/a)2 (since pr{E n  F) = 
pr{E]pr{F) when E and F are independent events). By adding up these 
probabilities for all n squares, we obtain

as the probability that the coin will lie entirely within one of the squares. 
Note that the argument might fail to be valid for the edge squares of the 
floor (for example, if the tiles run wall-to-wall, the center of the coin could
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not lie closer than djl to the outer edge of an edge square). However, if 
the number of interior squares on the floor greatly exceeds the number of 
edge squares, the error involved in using the above result is negligible. 
The error disappears altogether for a floor of infinite length and width.

Note that in the examples considered, the solution to the problem 
depended heavily on the interpretation of the term “at random.” In all 
cases where any doubt can arise as to the meaning of this term, it is 
necessary to make precise in the statement of the problem how the term is 
to be understood; without this the problem will not have an unambiguous 
solution (see the remark below). In the following problems, however, 
such doubt can scarcely arise: in all of them it is possible to define “at 
random” in almost the same way as in the above examples, and this is 
the way the term is to be understood throughout.

Remark. A classical example of a problem in which there are many 
different possible meanings for the term “at random,” each of them making 
sense intuitively, but each giving rise to different values for the probability is 
the following:

“What is the probability that a chord drawn at random on a circle will be 
longer than the side of the inscribed equilateral triangle?”

Various different answers can be obtained by interpreting the term “at 
random” in various ways. For example, because of the symmetry of the figure, 
we can restrict our attention to chords parallel to a given direction and interpret 
the term “at random” as follows (fig. 1 la). Draw the diameter which is perpen
dicular to the given direction; each chord is uniquely determined by specifying 
the point at which it meets this diameter. Interpret the term “at random” as 
meaning that the probability of this intersection point lying within a given 
segment of the diameter shall depend only on the length of that segment The 
desired probability will then be 1/2, since the chords longer than a side of the 
inscribed equilateral triangle are those which lie at a distance of less than rjl 
from the center.

On the other hand, again because of symmetry, we can restrict our 
attention to those chords which pass through a given point A of the circumference 
(fig. lib). Let 1 be the tangent to the circle at A. A chord can be thought of as 
a ray emanating from A and lying on the same side of t as the circle. Let us
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interpret the term “at random” as meaning that the probability that this ray 
lies within a given angle 0 depends only on the magnitude of 0 and not on its 
position (as long as 0 is on the same side o f t as the circle.) Since the angles of 
an equilateral triangle are 60°, it then follows that the desired probability is 
60°/180° =  1/3.

Finally, one can also interpret the term “at random” to mean that 
the probability that the midpoint o f a chord lies within a given circle is 
proportional to the area o f that circle. (N ote that the midpoint o f a chord 
uniquely determines the chord, unless it is a diameter.) Since any point inside 
the circle can be the midpoint of a chord, and the points which are midpoints 
of chords longer than a side of the inscribed equilateral triangle form the interior 
o f a circle o f radius rj2  (see fig. 1 lc), the desired probability must, in accordance 
with this interpretation o f the term “at random,” have the value tt (r llf fr r*  =  i .

This example emphasizes the fact that a proper use o f the term probability 
requires the specification of a definite experiment. The term “at random” 
must be understood as an indication o f just how the experiment in question is 
to be performed. In the above examples about breaking the rod and tossing the 
coin onto the tile floor, and in problems 95-100 below, the sense o f this word 
is clear from the statement of the problem. In the case of a “random” selection 
of a chord on a circle it is not clear without any further explanation just how this 
selection is to be carried out, and the term “at random” gives no explanation 
by itself. If we draw a circle on a large sheet o f paper, drop a needle onto the 
paper and (in those cases where the point of the needle lies within the circle) 
draw a chord whose midpoint is the point o f the needle; then the third o f our 
interpretations is valid and the desired probability is 5 . If we select a point A on 
the circumference o f the circle, fasten a rod at A, spin it about A, and draw a 
chord in the direction in which the rod comes to rest, then the second interpreta
tion is valid (neglecting friction) and the desired probability is V  Finally, it is 
not hard to show that for most o f the more natural ways o f selecting a chord 
“at random” (dropping a circular disk onto a plane surface on which a line has 
been drawn, dropping a long rod onto a plane surface on which a circle has been 
drawn, observing the trajectory of stars passing behind the moon or o f particles 
moving linearly in the [circular] field of vision o f a microscope or telescope), 
the first o f  the three interpretations is valid and the required probability is \  ; 
in this sense, the first o f the three solutions presented is the “most correct.”

95. Two people agree to meet at a given place between noon and 1 pm. 
By agreement, the first to arrive will wait 15 minutes for the second, 
after which he will leave. What is the probability that the meeting actually 
takes place if each of them selects his moment of arrival at random during 
the interval from 12 noon to 1 pm?

96. A rod is broken into three pieces; the two break points are chosen 
at random. What is the probability that the three pieces can be joined at 
the ends to form a triangle?

97. * A rod of length L is broken at two points chosen at random. What
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is the probability that none of the three pieces has length greater than a 
given number a 7

98. Three points A, B, and C on the circumference of a circle are chosen 
at random. What is the probability that all three angles of the triangle 
ABC are acute?
99. * A piece is broken off from each of three identical rods; the break 
points are chosen at random. What is the probability that a triangle can 
be formed from the three pieces obtained?
100. ** A piece is broken off at random from each of three identical rods. 
What is the probability that an acute-angled triangle can be formed from 
the three pieces?

With this we close the set of problems illustrating the computation 
of probabilities. The problems presented here really belong to the 
“prehistory” of probability theory; the solution of such problems is 
connected with the origin of this branch of mathematics in the Seventeenth 
Century in the works of Pascal, Fermat, and Huygens. The further 
development of probability theory in the Eighteenth and early Nineteenth 
Centuries is connected with the names of Jacob Bernoulli, Laplace, and 
Gauss; in the works of these mathematicians many probability problems 
are collected and the methods of applying this new discipline to problems 
of science and engineering are considered for the first time. However, 
the final development of probability theory into an independent and deep 
science of great practical importance and with its own distinctive methods 
of investigation did not occur until the second half of the Nineteenth 
Century and the beginning of the Twentieth Century. The growth of 
probability theory continues at the present time.10

10 Supplementary reading: E. B. Dynkin and V. A. Uspenskii, Mathematicheskie 
Besedy (“Mathematical Conversations”), section III, Moscow and Leningrad, Gostek- 
hizdat, 1952; section III of this book is also available in German translation under the 
title “Mathematische Unterhaltungen” (Deutscher Verlag der Wissenschaften, East 
Berlin, 1956); John Riordan, An Introduction to Combinatorial Analysis, New York, 
Wiley, 1958.
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SOLUTIONS

I. IN TRO D U CTO RY  PROBLEM S

1. Let A, B, C be the three given points, and suppose / is a line equidistant 
from them. If A, B, C were all on the same side of /, they would lie on a 
line parallel to /, contradicting the hypothesis. Therefore two of the 
points are on one side of / and the third point is on the other side of /. 
Suppose for example that A and B are on one side of /, while C is on the 
other side. Then / must be parallel to the line AB and must pass through 
the midpoint of the perpendicular CP from P to the line AB (fig. 12).

These conditions completely determine /; conversely the line / so deter
mined is actually equidistant from A, B, C. Hence there is a total of 
three lines equidistant from A, B, C (one separating each of the points 
from the other two points).
2. Let A, B, C, D be the four given points, and suppose 11 is a plane which 
is equidistant from them. If A, B, C, D were all on the same side of II, 
they would lie in a plane parallel to II, contradicting the conditions of 
the problem. Consequently, only the following two cases are possible: 
(1) Three of the points lie on one side of TI and the fourth point is on the 
other side. (2) There are two of the points on each side of II.

Consider case 1. Let A, B, C lie on one side of II and D on the other 
side (fig. 13). The points A, B, C cannot be collinear, since if they were, 
all four points would be coplanar. Therefore A, B, C determine a unique 
plane, which must be parallel to II. Moreover, II must pass through the
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D

midpoint of the perpendicular DP which joins D to the plane ABC. Thus 
there is one and only one plane n  equidistant from A, B, C, D with A, B, C 
on one side of it and D on the other side.

By the same reasoning there is exactly one plane equidistant from 
A, B, C, D with C (or B or A) on one side of it and the other three points 
on the other side of it. Thus there are a total of four planes in case 1.

Consider case 2. Let A, B lie on one side of n  and C, D on the other 
side (fig. 14). Since Lf is equidistant from A and B, it must be parallel to 
the line AB. Likewise n  must be parallel to the line CD. Since A, B, C, D 
are not coplanar, the lines AB and CD must be skew. Now draw a plane 
n ! containing AB and parallel to CD (this can be done by drawing a line / 
through A parallel to CD; then LI1 is the plane containing / and B). Also 
draw a plane 1I2 containing CD and parallel to AB. Then FI is parallel to 
these planes and equidistant from them, so it must pass through the mid
point of any perpendicular joining them (fig. 14). Thus there is one and 
only one plane IT equidistant from A, B, C, D with A, B on one side and 
C, D on the other.

The same reasoning shows that there is exactly one plane equidistant 
from A, B, C, D with A , C on one side and B, D on the other; and exactly

Fig. 14
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one with A, D on one side and B, C on the other. Thus there are a total 
of three planes in case 2.

Combining the two cases gives a total of 4 +  3 =  7 equidistant 
planes. If one considers the tetrahedron (triangular pyramid) with vertices 
A, B, C, D, then four of these seven planes are parallel to the faces of 
the tetrahedron and will pass through the midpoints of the corresponding 
altitudes (fig. 15a), and the other three planes are each parallel to a pair 
of opposite edges and equidistant from them (fig. 15b).

a. b.

Fig. 15

3. Let A, B, C, D be the given points, and suppose s is a circle or straight 
line equidistant from them. Then A, B, C, D cannot all be on the same 
side of s. (By the two sides of a circle we mean, of course, the inside and 
the outside.) For they would then lie on a circle concentric with s or a 
line parallel to s according as s is a circle or a straight line. Hence there 
are two possibilities: (1) Three of the points lie on one side of s and the 
fourth point on the other side; (2) Two of the points lie on one side of s 
and the other two points on the other side.

Consider first case 1, and suppose for example that A, B, C are on 
one side of s, while D is on the other side. There is a unique circle or 
straight line t passing through A, B, C (fig. 16). Moreover t does not pass 
through D, by hypothesis. To be equidistant from the four points, s must 
be concentric with or parallel to t (according as t is a circle or a straight 
line) and must pass through the midpoint of the perpendicular DP from 
D to t. These conditions determine s uniquely; conversely the circle or 
straight line s so determined is indeed equidistant from A, B, C, D.

The same reasoning shows that there is exactly one circle or straight 
line equidistant from A, B, ‘C, D with C (or B or A) on one side and the 
other three points on the other side. Thus there are a total of four circles 
or straight lines in case 1.
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Next consider case 2, and suppose for example that A, B are on one 
side of s, while C, D are on the other side (fig. 17a). If s is a circle, then 
its center O must be equidistant from A, B, and hence must lie on the 
perpendicular bisector p of AB. Similarly O must lie on the perpendicular 
bisector q of CD. Consequently, if p and q intersect, then O must be the 
point of intersection. Moreover the radius of s must be \(OA +  OC), 
since s must pass midway between the circles and s2 which have O as 
center and OA, OC respectively as radii. (In this case there is no straight 
line equidistant from A, B, C, D, since any such line would be parallel 
to AB and CD, thus making p parallel to q).

If p and q are parallel (fig. 17b), then AB is parallel to CD. In this case 
the only possibility for 5 is a straight line parallel to AB and lying midway 
between AB and CD.

P

A . .B

<7

C D

b.

Fig. 17
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The case in which p coincides with q cannot arise, since then there 
would be a circle passing through A, B, C, D (see fig. 18; the perpen
dicular bisector r of AC intersects p in a point E equidistant from A, B, 
C, D).

Thus in any case there is exactly one circle or straight line which is 
equidistant from A, B, C, D with A, B on one side of it, and C, D on the 
other. By the same reasoning there is exactly one such circle separating 
A, C from B, D and one separating A, D from B, C. Hence there are 
altogether 3 circles or straight lines in case 2.

Combining 1 and 2, we get a total of 4 +  3 =  7 circles or straight 
lines equidistant from the four points.

4. Let A, B, C, D, E be the given points, and suppose E is a sphere or 
plane equidistant from them. Then A, B, C, D, E cannot all be on the 
same side of 2. (By the two sides of a sphere we mean the inside and the 
outside.) For if they were, they would lie on a sphere concentric with E 
or on a plane parallel to E, according as E is a sphere or a plane. Con
sequently there are two possible cases: (1) Four of the points lie on one 
side of E and the fifth point on the other side; (2) three of the points lie 
on one side of E and the other two on the other side.

Consider first case 1, and suppose that A, B, C, D are on one side of 
E, while E is on the other side. Then A, B, C, D do not all lie on a circle 
or a straight line, since if they did, A, B, C, D, E would be cospherical 
(i.e., all on a sphere) or coplanar. Consequently, there is a unique sphere 
or plane S  passing through A, B, C, D. If S  is a sphere, then S is a sphere 
concentric with S  (fig. 19). Moreover E must pass through the midpoint of 
ME, where O is the center of S, and M  is the point where OE meets S. If S 
is a plane, then E is a plane parallel to S (fig. 20), and E must pass through 
the midpoint of EP, the perpendicular from E to S. Thus, in either case 
there is exactly one sphere or plane E equidistant from A, B, C, D, E and 
such that A, B, C, D are on one side of it and E is on the other side.
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Fig. 19 Fig. 20

The same reasoning shows that there is exactly one sphere or plane 
equidistant from A, B, C, D, E with D (or C or B or A) on one side and 
the other four points on the other side. Thus there are a total of five 
spheres or planes in case 1.

Next consider case 2, and suppose A, B, C are on one side of £, 
while D, E are on the other side. There is exactly one straight line or 
circle j  which passes through A, B, C. Suppose first that s is a circle, and 
denote its center by /•’(fig. 21). If E is a sphere, then its center O must be 
equidistant from A, B, and C; consequently O must lie on the line p 
which is perpendicular to the plane ABC and passes through F. On the 
other hand, O must be equidistant from D and E, and therefore must lie 
in the plane II which passes through the midpoint of the segment DE and 
is perpendicular to it. Consequently, if p intersects n , then O must be 
the point of intersection. Moreover the radius of £  must be equal to 
&0 A +  OD), since £ must pass midway between the spheres Si and £ 2 
which have O as center and OA, OD respectively as radii.

If p and FI do not meet, i.e., if they are parallel (fig. 22), then DE is 
parallel to the plane ABC. In this case the only plane or sphere equidistant 
from A, B, C, D, E with A, B, C on one side and D, E on the other is the

E P

Fig. 21
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plane parallel to ABC and passing through the midpoint of the perpen
dicular to ABC from any point of DE. The case in which p lies in IT 
cannot arise, since then there would be a sphere passing through all five 
points.

Now suppose that s is a straight line (fig. 23). In this case £  must 
be a plane, since three collinear points on the same side of a sphere 
cannot be equidistant from that sphere. As in the solution to problem 3, 
there is a unique plane 2 which passes midway between the (unique) pair 
of parallel planes containing the skew lines ABC and DE ; this plane is 
the desired one.

Thus in any case there is exactly one sphere or plane which is equi
distant from A, B, C, D, E with A, B, C on one side of it and D, E on the 
other. By the same reasoning, for every pair of points selected from 
A, B, C, D, E, there is exactly one sphere or plane £ equidistant from 
A, B, C, D, E with the selected pair on one side of £ and the remaining

three points on the other side. There are =  10 such pairs (AB, AC,

AD, AE, BC, BD, BE, CD, CE, DE), and so there are altogether 10 
spheres or planes in case 2.

Fig. 23
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Combining cases 1 and 2 we get a total of 5 +  10 =  15 spheres and 
planes equidistant from the five points.
5. The problem amounts to determining how many points (the centers of 
the required spheres) are equidistant from the four faces of the tetrahedron.

The locus of all points equidistant from the two faces of a dihedral 
angle is the bisector of the dihedral angle, i.e., the plane which divides it 
into two congruent dihedral angles. Since any two intersecting planes 
form two pairs of vertical dihedral angles, the locus of all points equidistant 
from two intersecting planes consists of two planes which pass through 
the line in which the given planes intersect, namely, the bisectors of the 
dihedral angles formed by the given planes.

The locus of all points equidistant from the faces of a trihedral angle 
is the line where the bisectors of the dihedral angles of which it is composed 
meet; this line passes through the vertex of the trihedral angle.

Since three planes intersecting in a point P form four pairs of vertical 
trihedral angles, the locus of all points equidistant from the given planes 
consists of four straight lines through P.

Now let Ilj, n 2, H3, n 4 be the planes of the faces of the tetrahedron T. 
The above remarks show that the locus of all points equidistant from 
n 2, and n 3 consists of four straight lines /?1; /92, /?3, /94. Furthermore, the 
locus of all points equidistant from n 4 and II4 consists of two planes Bx 
and B2. Every point at which one of the lines (}x, /$2, /S3, /S4 meets one of 
the planes Bx, B2 is equidistant from Ilj, H2, II3, II4 (and these are the 
only such points). Hence there can be at most eight points equidistant 
from rij, n 2, n 3, n 4 (there may be less, since one of the /5’s might be 
parallel to one of the B’s). This means that there are at most eight spheres 
tangent to Hj, II2, n 3, Il4. Of these eight spheres, one lies inside the 
tetrahedron (the inscribed sphere, fig. 24a), four lie outside the tetrahedron, 
inscribed in each of the four trihedral angles shown in fig. 24b, and the 
other three are each inscribed in an interior dihedral angle and the 
opposite exterior dihedral angle (fig. 24c).

In special cases a tetrahedron can have less than eight spheres tangent 
to the planes of its faces. For example, a regular tetrahedron has only 
five such spheres (only those of the kinds shown in figs. 24a and 24b).

Remark. Let A x, A 2, A3, A 4 be the areas o f the four faces o f the tetrahedron 
T. It can be shown that if one o f the three equations

(1) A x +  A2 =  A 3 +  A 4

(2) A x +  A 3 =  A 2 +  A4

(3) A x +  A4 =  A 2 +  A3

holds, then there is no sphere inscribed in the interior dihedral angle formed by 
the planes on one side o f the equation and the exterior dihedral angle formed 
by those on the other side. Conversely if the equation does not hold, then there
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a. b.

c.
Fig. 24

will be such a sphere. Therefore:
1. If none o f the equations (1), (2), or (3) holds, there are eight spheres 

tangent to all the faces.
2. If one o f the equations holds there are only seven tangent spheres.
3. If two o f the equations hold, there are only six tangent spheres. In 

this case the faces are equal in pairs; for example, if (2) and (3) hold, then
=  A 2 and A 3 =  A t .

4. If (1), (2), and (3) all hold (in which case A z =  A 2 =  A 3 =  A4), there 
are only five tangent spheres.1

6. Suppose that the six colors are yellow, blue, red, green, white, and black. 
Turn the cube so that the green face is on the bottom. The top face can 
then be any of the other five colors. Furthermore, no two colorings in 
which the top face is painted different colors (the bottom face being green 
in each case) can be obtained from one another by rotating the cube. 
So if we can determine the number of colorings in which the top face is

1 Cf. J. Hadamard, Legons degeometrie elemeniaire Paris, 1908, problems 688  and 
1211 bis. For solutions see the Russian edition, Elementarnaya Geometriya Moscow, 
1958, Vol. II, problem 701.
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painted some specific color, say blue, then the total number of colorings 
will be five times this number.

Select one of the four remaining colors, say red, and turn the cube 
so that the red face is the back face. This can always be done by rotating 
the cube about the vertical axis through its center (which leaves the blue 
face on top and the green face on the bottom). There are now three 
colors left, yellow, black, and white, with which to color the three remaining 
faces (the front face and the two side faces). The front face can therefore 
be colored in three ways, each of which leaves two ways to color the side 
faces. So we obtain six colorings which are all different, since there are 
no rotations of the cube leaving the top, bottom, and back faces fixed.

Consequently the total number of colorings is 5 x 6 =  30.
/ 33\

7. The eleven boys who form the first team can be chosen in I 1 =
33 • 32 • • • 23 ^  '
-----------------different ways. The eleven boys who form the second team

111 . /22\ 22-21  • • •12 
can be chosen from the remaining 22 in I jj I = ------ —------- different

ways. Then the third team is completely determined, since it consists of 
the eleven remaining boys. Therefore there are

33\/22\ 33 • 32 • ■ • 12 _  33!
11 /V11/ (11 !)2 ~  (11 !)3

ways of dividing the boys into a first team, second team, and third team. 
But in this enumeration each division into three teams is counted 3! — 6 
times, once for each way of deciding which team is to be called “first,” 
“second,” and “third.” Thus the number of divisions into three teams is

33! -  =  22,754,499,243,840. 
3! (11 !)3

Remark. In exactly the same way one can show that the number of ways
(nk')!

of dividing nk objects into k  sets of n objects is  ̂ .

8. Let the 11 flavors be Fu F2, . . . Then any choice of 6 ice cream
cones can be described by listing the flavors in increasing order. For 
example, F ^ F ^ F ^ ^  would mean a choice of 2 ice cream cones of flavor 
Fu one of F3, etc. Now let us draw vertical lines to separate the /q’s 
from the F2’ s, the F2’s from the F3’ s, . . . , and finally the F10’s from the Fn ’s. 
Jn the above example we would get FjFJ |F3| |F5 | FJ |F8| | |. The result 
is a sequence of 16 symbols of which 6 are F’s and 10 are vertical lines. 
Conversely, start with a row of 16 dots:

Pick any 10 of the dots and draw vertical lines through them. For example, 
we might get
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Then this scheme determines a choice of 6 ice cream cones in which the 
dots to the left of the first vertical line are F^ s, the dots between the first 
and second vertical lines are F2’s, etc. In the above example we would get 
F2F,FriF,FsFu .

It follows that the number of ways of choosing the 6 ice cream cones 
is equal to the number of ways of choosing 10 dots out of 16. This

,16'l 
10Jnumber is 8008.

Remark. If there are n different flavors available and the number of ice 
cream cones to be selected is m, then the number of ways o f choosing them is
( m -f n — 1 \  Im  +  n — 1 \  

) = \  ™ / '

\m -r n — 1 \ lm +  n
n — \ J y m

as the special case n =  11, m =  6  treated above.

This can be proved in exactly the same way

9. Given any 5 members of the group, there must be a lock for which 
none of them has the key. But each of the other 6 members must have this 
key, since the addition of one more member to the 5 forms a majority. 
Therefore the number of locks must be at least equal to the number of

ways in which 5 people can be selected out of the 11 scientists, i.e., U  
462. ' 5 '

Now let A be one of the scientists. We have just seen that given any 
set of 5 scientists selected from the remaining 10, there is a lock which 
they cannot open, and that A has a key to this lock. So A has at least

j =  252 keys.

The lower bounds just derived can actually be attained by using 462 
locks, one for each set S  of 5 scientists. If L is the lock associated with 
the set S, then only the other 6 scientists are given keys to L. A majority 
M can always open the safe, since for any lock L there are only 5 people 
not having keys to L, so that some one in M  has a key.

Remark. If there are n scientists and if it is required that the safe can be 
opened if and only if at least m o f them are present, then the minimum number

of locks is | n I , and the minimum number o f keys held by each scientist is 
, \m  — 1 /I n — 1 \ x

I I . This indicates that such a system o f safekeeping is impractical, since

even for comparatively small values o f m and n} opening the safe would require 
a whole day o f fumbling with keys.

10. After the first time around, all numbers which leave a remainder of 1 
upon division by 15 will have been marked; the last of these will be 991. 
The first number to be marked on the second time around will be 
991 +  15 — 1000 =  6; further, on the second time around, all numbers 
which leave a remainder of 6 upon division by 15 will be marked (the last 
of them will be 996). The first number to be marked on the third time
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around will be 996 4- 15 — 1000 =11 ;  further, on the third time around, 
all numbers which leave a remainder of 11 upon division by 15 will be 
marked (the last of them will be 986). The first number to be marked on 
the fourth time around would be 986 +  15 — 1000 =  1. Since this 
number has already been marked earlier, by continuing to count in 15’s 
around the circle, we would keep hitting numbers already marked.

Thus, those numbers and only those numbers which leave remainders 
of 1, 6, or 11 upon division by 15 will get marked. But these are precisely 
the numbers which leave a remainder of 1 upon division by 5. TThere are 
1000/5 =  200 such numbers among the first 1000(namely, 1,6, 11, 16, . . .  , 
996 =  5-199 +  1). Consequently 1000 — 200 =  800 numbers remain 
unmarked.
11a. First solution. Let us first compute how many of the integers under 
consideration do not have any l’s among their digits. By adjoining 0 
and deleting 10,000,000,000, we obtain a sequence of 1010 numbers in 
which there is one more number with no l ’s among its digits than there 
was before. Let us agree to write before each number of less than ten 
digits enough zeros to raise the number of digits to ten. The new sequence 
of numbers consists of 1010 integers, beginning with 0,000,000,000 and 
ending with 9,999,999,999. If one of these numbers has no l ’s among 
its digits, then its first digit must be one of the nine numbers 0, 2, 3, 4, 
5, 6, 7, 8, 9. The second digit will likewise have to be one of these nine 
numbers. By pairing each of the nine possible values for the first digit 
with each of the nine possible values for the second, we obtain a total of 
92 different possibilities for the first pair of digits. In exactly the same way, 
we obtain 93 possibilities for the first three digits of our number, 94 different 
possibilities for the first four digits, etc., and finally 910 different possibilities 
for the first ten digits. But this means that among the integers from 
0,000,000,000 to 9,999,999,999 there are 910 different numbers which 
have no l ’s among their digits. Consequently, there are exactly

910 -  1 =  3,486,784,401 -  1 =  3,486,784,400
such numbers among the integers from 1 to 10,000,000,000. Therefore, 
there are

10,000,000,000 -  3,486,784,400 =  6,513,215,600
of them in which l ’s occur among the digits.

Second solution. Let us compute how many of the integers under 
consideration have Ts among their digits. By a ten-row we mean a set of 
ten integers which consists of some multiple of ten and the next nine 
integers after it (for example, {210, 211,212, . . . , 219}); by a hundred-row 
is meant a set of 100 integers which consists of a multiple of 100 and the 
next 99 integers after it (for example, (32400, 32401,32402, . . . , 32499}); 
by a thousand-row we mean a set of 1000 integers which consists of some
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multiple of 1000 and the next 999 integers after it, etc. Note that 0, being 
a multiple of any number, is a multiple of 10, of 100, of 1000, etc.; hence 
{0, 1,. . . , 9}, {0, 1,2,.  . . , 99}, etc., count respectively as the first ten-row, 
the first hundred-row, etc.

In the first ten-row there is exactly one number among whose digits 
a 1 occurs, namely the number 1. In the first hundred-row, each ten-row 
except the second (which consists of the numbers from 10 to 19) will 
contain exactly one number with a 1 among its digits; the second ten-row 
consists entirely of numbers with l ’s among their digits.

Consequently, the first hundred-row contains
10 +  9-1

numbers which have l ’s among their digits: ten in the second ten-row 
and one in each of the other 9 ten-rows.

In the first thousand-row, each hundred-row except the second will 
therefore contain exactly 10 +  9-1 integers which have l ’s among their 
digits; the second hundred-row consists entirely of numbers with l ’s 
among their digits. Consequently, the first thousand-row contains

100 +  9(10 +  9 • 1) =  102 +  9 ■ 10 +  92 
numbers which have 1’s among their digits.

In the first ten-thousand row, each thousand-row except the second 
will contain exactly 102 +  9 • 10 +  92 numbers which have l ’s among 
their digits; the second thousand-row will consist entirely of such numbers. 
Thus among the first 10,000 nonnegative integers there will be

1000 +  9(102 +  9 • 10 +  92) =  103 +  9 • 102 +  92 • 10 +  93
numbers which have l ’s among their digits.

Continuing to reason in this fashion, we see that among the first 
10,000,000,000 nonnegative integers (the numbers from 0 to 9,999,999,999) 
there are

109 +  9 • 108 +  92 • 107 +  ■ • • +  98 • 10 +  99 
=  109(1 +  A +  (i9o)2 +  • • • +  (A )9) 

iq9 1 — (9/10)10 
1 -  9/10 

_  109 — 91 °/10 ]Ql0 gl0
1/10

numbers which have l ’s among their digits. Among the numbers from 
1 to 10,000,000,000, the number of integers with l's among their digits will 
be one greater, namely

1010 -  910 +  1 =  6,513,215,600.
This result of course coincides with that obtained in the first solution. 

It shows that among the numbers under consideration there are more 
with l ’s among their digits than without.
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lib . Among the integers from 1 to 222,222,222 there are 22,222,222 
ending in a 0 (namely, the numbers 10, 20, 30, , 222,222,220). In order
to determine how many integers have a 0 in the next to last position, 
notice that what comes before this 0 can be anything from 1 to 2,222,222, 
while what comes after it can be anything from 0 to 9. Therefore there 
are 2,222,222 • 10 =  22,222,220 integers with a 0 as their next to last digit. 
Similarly there are 222,222 - 100 =  2,222,200 integers with a 0 as their 
second-from-last digit, because what comes before this 0 can be anything 
from 1 to 222,222, while what comes after it can be anything from 00 to 99. 
Continuing in this way we see that the total number of 0’s is

22,222,222 +  22,222,220 +  22,222,200 +  22,222,000 +  22,220,000
+  22,200,000 +  22,000,000 +  20,000,000 =  175,308,642.

II. THE R E P R E S E N T A T I O N  OF I NTEGERS AS 
SUMS AND PRODUCTS

12a. The expression #{A) +  #{B) counts the number of elements in A or 
B, but counts the elements of A n  B twice. So by subtracting #(A D B) 
we get exactly the number of elements in A \J B.
12b. Consider an element e which is in only one of the three sets, say in A. 
Then in the expression

#(A) +  MB) +  #(C) -  #(A  n  B)
-  #{A n C ) -  #{B n  C) +  #(A n  B n  C), (1)

e is counted exactly once, namely in the term #(A). Next consider an 
element/ which is in exactly two of the sets, say A and B. Then / i s  
counted positively in the terms #{A) and #(B), and negatively in the 
term —#(A  n  B). Hence it is counted a net of 1 +  1 — 1 =  1 time in 
the expression (1). Finally suppose g is an element in all three of the sets 
A, B, C. Then g is counted by each term of (1), and is therefore counted 
a net of 1 +  1 +  1 — 1 — 1 — 1 +  1 =  1 time. This analysis shows 
that expression (1) counts each element of A U B KJ C once. On the 
other hand, elements not in A U B U C are not counted in any of its 
terms, and therefore (1) is equal to #(A  W B U C).
12c. The general case can be treated by the same reasoning as that used 
in part b. We must show that in the expression

#{Ay)  +  # ( / J 2) +  • • • +  # ( A J  -  M A 1 n A j -  #(Aj  n  a 3) -  ■ • • 

— M.Am-\  n  A m) +  #{A\  r\ a 2 n  a 3) +  • • •
+ n A 2 n - - - r \ A J ,  (2)
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every element of Ax U • • ■ U A m is counted with a net coefficient of 1. 
Note that elements not in Ax U • • • U Am are not counted at all by (2). 
Suppose an element e is in exactly h ^  1 of the sets Au . . . , Am. For 
definiteness, suppose it is in A1} . . .  , Ah, but not in Ah+l, . . . , A m. Then 
e will be counted in each of the h terms #(AD, . . . , #{A.^ of (2). It will

be counted negatively in (^ ) of the terms — #{At D A}) (namely, the
//i\

terms where 1 h; there are L. I such terms because there are
(h\0 I ways of choosing the integers i , j f rom among the numbers 1, . . . , h).

lh\Similarly e will be counted by I I of the terms #(A t n  Aj n  Ak), etc. 

The total number of times e is counted is therefore

i) -  5 ) + ( 3
+ ( - i r ' ( hh

We must show that this expression is equal to 1. To see this we use 
the binomial theorem

(a +  b f  =  (J)** +  +  ( ty a h~2b2 + • • •  +  (£)&*

Putting a — 1, b =  —1, the left-hand side vanishes, so we get

o = ( 2 ) - ( t ) + ( 2 ) - ' " + ( - i),(!;)-

Transposing all terms but (^ j to the left-hand side, and using the
(h\ Wfact that IqI =  1, we see that

0 - C M ! )
which completes the proof.

13a. We will solve this problem by applying the principle of inclusion 
and exclusion (see problem 12). Let A be the set of all positive integers 

999 which are multiples of 5, and let B consist of all multiples of 7 in 
the same range. Then #{A) = [999/5] =  199, since A consists of the 
numbers 5, 10, 15, . . . , 995 =  199-5. Similarly #{B) =  [999/7] =  142, 
since B consists of the numbers 7, 14, 21, . . .  , 994 =  142-7. Now A n  B 
consists of all positive integers S. 999 which are multiples of 5 and 7, that 
is, the multiples of 35. The same reasoning as above then shows that 
#(A  n  B) — [999/35] =  28. By the principle of inclusion and exclusion, 
#(A  U 5 ) =  199 -f 142 — 28 =  313. The elements of A U B are the 
positive integers <  1000 which are divisible by either 5 or 7. Since we 
want to know how many integers in this range are not divisible by either
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5 or 7, we must subtract 313 from 999, getting 999 — 313 =  686 as the 
final answer.

13b. Let A and B be the same sets as in part a, and let C be the set of all 
positive integers ^  999 which are multiples of 3. Then A C\ C consists of 
the multiples of 5 • 3 =  15, B C\ C of the multiples of 7 • 3 =  21, and 
A n  B n  C of the multiples of 5 • 7 • 3 =  105 in this range. Reasoning 
as in part a we see that

#(C) =
'999'

L 3 

#(B n C )  =

=  333, #{A n  C) '999'
15 J

and #{A n  B n  C) =

66 ,

999 
L105 J

9.999
L 21 J '

By the principle of inclusion and exclusion,
#{A U i u C )  =  199 +  142 +  333 -  28 -  66 -  47 +  9 =  542.
The elements A U B U C are the positive integers ^  999 which are 

divisible by either 5 or 7 or 3. Since we want to know how many integers 
in this range are not divisible by 5, 7, or 3 we must subtract 542 from 999, 
getting 999 — 542 =  457 as the solution to the problem.

Remark. By applying the general case of the principle of inclusion and 
exclusion, one can obtain the following extension of problem 13. Let positive 
integers pi,p2, ■ . . ,pm be given, no two of which have a common factor > 1 
(in the terminology of number theory, p t and p} are relatively prime when /
Let N be a positive integer. Then the number of positive integers ^  N which 
are not divisible by any of the numbers P\,p2, • • ■ ,pm> is

N -
N~

-Pi.
" N~ 
-Pm.

+
N

-PlP2_ 
N

+
N 

-PlP*.
+

LPr

-PlP2P3_ + ( - i  r

N ■
n—1Pm_

N
-PlPi ' " ‘ Pm_

Problem 13b is the case where N = 999, m = 3, px = 3, p2 = 5, p3 = 1.
14. This problem is closely related to the preceding one. The factori
zation of 1260 into prime factors is 1260 =  22 • 32 • 5 • 7. Consequently 
the problem amounts to determining the number of positive integers 
^  1260 which are not divisible by 2, 3, 5, or 7. Let A consist of the positive 
integers sS 1260 which are multiples of 2; let B consist of the multiples 
of 3 in the same range, C of the multiples of 5, and D of the multiples of 7. 
By the principle of inclusion and exclusion,

# { A V B y J C K J D )  = #04) +  #{B) +  #(C) +  #(/>)
-  #(A C\ B) — #{A n  C) -  #{A n  D)
-  #{B  n  0  -  #{B n  D) -  # ( c  n  D)
+  #(A  n  B n  C) +  #04 n B  n  D) + #{A n  c  n  D)
+  # (5  n c  n  D) — #(A n  B r\ c  n  D).
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Now the reasoning of problem 13 shows that

#04) =

#{B) =

#(C ) =

#(D) =

#04 n  B) =

1260
2

1260
3

1260
5

1260
7

1260 
2 • 3

630

420

252

180

210

#04 n  C) =  

#{A n  D) = 

#{B  n  C) =  

#(B n  D) =

1260 
2 • 5
1260
2 • 7
1260
3 • 5
1260 
3 • 7

126

90

84

60

#(C n  D) = 1260 
5 • 7

36

#04 n  b  n  C) =  

#04 n f l  n  D) =  

#(i4 n  c  n  D) =  

#(B n  C n  D) =

1260
2 - 3 - 5

1260
2 - 3 - 7

1260
2 -  5 -7

1260
3 -  5 -7

42

30

18

12

#04 n B  n c  r\ D) = 1260 
2 • 3 ■ 5 • 7

=  6 .

Therefore our formula gives

#(T u  B U C u  D) -  630 +  420 +  252 +  180 -  210 -  126 -  90 
-  84 -  60 -  36 +  42 +  30 +  18 +  12 -  6 =  972.
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Now A U B U C U D consists of the positive integers sg 1260 which 
are divisible by at least one of the numbers 2, 3, 5, 7. To find out how 
many integers are not divisible by 2, 3, 5, or 7 we therefore subtract 972 
from 1260, getting 288.

Remark. As in the remark to problem 13, the principle of inclusion and 
exclusion for m sets can be applied to prove the following generalization of the 
result just obtained: If A is a positive integer, and N = /»1°1/»2°2 • • ' Pmm is 
its factorization into primes, then <p(N), the number of positive integers ig N 
and relatively prime to N, is given by the formula

N N N N N N N
<p(N) =  N ------------------------ • • • ---------- + ------------ 1-   +  • • • + --------------------------------

P1 Pz Pm PiPt PlPz Pm—lPm PlPzPz
N N

— • • • — -------------- + • • • + ( — 1)m------------
Pm— 2 P m — iP m PlPz ■ ■ ■ p m

This last expression greatly simplifies the calculation of q>(N). Thus in the above 
example we get

93(1260) = 1260(1 -  !)(1 -  i)(l -  £)(1 -  A) = 1260 • * • § • -£ • = 288.
15. We will first determine the number of integers x in the range 
1 ^  x sj 10,000 such that 2X — x2 is divisible by 7. Subtracting this 
number from 10,000 then gives the answer to the problem.

Now 2X — x2 is divisible by 7 if and only if 2X and x2 both leave the 
same remainder when divided by 7. So it is natural to study these 
remainders. The first few powers of 2 are 2, 4, 8, 16, 32, 6 4 ,. . .  , and their 
remainders when divided by 7 are 2, 4, 1, 2, 4, 1, . . . . These remainders 
will keep repeating with a period of 3, so that 2, 4, and 1 are the only 
remainders which 2X can have. To prove that 2X and 2X+3 have the same 
remainder when divided by 7, note that 2X+3 — 2X — 8 • 2X — 2X = 7 • 2X 
is a multiple of 7.

Next we will make a similar analysis of the remainders of x2 when 
divided by 7. Putting x =  1, 2, 3, 4, 5, 6, 7 we have x2 = 1, 4, 9, 16, 25, 
36, 49, so that the remainders are 1, 4, 2, 2, 4, 1, 0. Thereafter the 
remainders will repeat with a period of 7, that is (x +  I)2 will have the 
same remainder as x2. This is because (x +  I)2 — x2 =  \Ax +  49 =  
l{2x +  7) is a multiple of 7.

Combining these results, we see that the remainders of both 2X and x2 
will repeat after a period of length 3 • 7 =  21. A tabulation of the first 
21 value of x is shown in the chart on page 57.

There are 6 cases in this range where 2X — x2 is divisible by 7 (namely 
x — 2, 4, 5, 6, 10, 15). By periodicity the next 21 values of x will give 6 
more cases, and so on. Now 10,000 =  21 • 476 +  4, so the integers from 
1 to 10,000 split into 476 groups of 21 and 4 extra numbers at the end.



II. The representation o f  integers as sums and products 57

A' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2* 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1

X2 1 4 2 2 4 1 0 1 4 2 2 4 1 0 1 4 2 2 4 1 0

The 476 groups contribute 476 • 6 =  2856 values of x, and the remaining 
four numbers contribute 2 values of * (namely x =  9998 and x =  10,000). 
So the total is 2858; subtracting this from 10,000 we get 10,000 — 2858 =  
7142 values of x  for which 2x — x2 is not divisible by 7.

16. If x2 +  y 2 is divisible by 49, then x2 +  y 2 is divisible by 7. But x2 
can only have 0, 1, 2, or 4 as its remainder upon division by 7. (See the 
solution to problem 15.) The same is true of y 2. Now it is easy to verify 
that of all sums of two of the numbers 0, 1,2, 4, only the sum 0 +  0 =  0 
is divisible by 7. Consequently, x2 +  y 2 is divisible by 7 only when x2 
and y 2 are divisible by 7, that is, only when x  and y  are divisible by 7. 
Conversely, if x and y  are two numbers divisible by 7, then the sum x2 +  y 2 
is divisible by 49. Thus the number we are seeking is the number of 
different pairs of positive integers x and y  which are both less than 1000 
and divisible by 7.

Since 1000 =  7 • 142 +  6, there are 142 multiples of 7 between 1 and 
1000. Pairing each of the 142 values for x  with each of the 142 values for 
y, we obtain a total of 1422 pairs (x,y). Of these, 142 pairs are of the form 
(x,x); each other pair occurs twice, once as (x,j>) and once as (y,x). 
Consequently, the total number of different pairs (x,y) equals

1422 -  142 _  142 • 143
2 ~  2

10,153.

17. Since 1,000,000 =  26 ■ 56, each of its divisors has the form 2a ■ 5b, and 
a decomposition of 1,000,000 into a product of three factors has the form

1,000,000 =  (2“i • 560(2°* • 56*)(2°» • 56»);

here au a2, a3, bx, b2 and b3 are nonnegative integers which satisfy the 
conditions

+  +  <+ +  «3 =  6, bx +  b2 +  b3 =  6.
Let us compute how many such systems of numbers a3, a2, a3, bu b2, b3 
there are.

If a1 — 6, then a2 and a3 must equal 0; thus in this case we have only 
one possible system of numbers au a2, a3.

If a1 =  5, then two systems are possible:

ax =  5, a2 =  1, a3 =  0 and ax =  5, a2 =  0, a3 =  1.
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If a, =  4, then three systems are possible:
+  =  4, a2 = 2, a3 = 0; ax =  4, o2 =  1, a3 = 1; 

a1 =  4, a2 =  0, u3 =  2.
It can be shown in the same way that if ax =  3, then four systems are 
possible, if a2 =  2, then five systems, if a1 = 1, then six systems, and if 
oj =  0, then seven systems. Thus the total number of systems of non
negative integers au a2, a3 which satisfy ax +  a2 +  a3 = 6 is

1 + 2  +  3 +  4 +  5 +  6 +  7 =  28.
By the same argument there are exactly 28 systems of numbers 

bv b2, b3 which satisfy b1 +  b2 +  b3 — 6. Since any combination of such 
a triple of numbers au a2, a3 with a triple bx, b2, b3 yields a decomposition 
of 1,000,000 into a product of three factors, the total number of decom
positions is

28 • 28 =  784.
However, in this enumeration, factorizations which differ only in the 

order of the factors have been counted separately; that is, some factor
izations are counted several times each. Let us determine how many times 
each factorization occurs.

(1) Exactly one factorization, namely
10° =  (22 ■ 52)(22 • 52)(22 ■ 52),

occurs only once.
(2) If in a decomposition of 10fi into a product of three factors, two 

of the factors are equal (and the third factor different from them), then 
the factorization occurs three times: the unduplicated factor can come 
either first, second, or third.

Let us compute the number of such factorizations. Let the factor 
which is repeated in the factorization be 2° • 5b; that is, the factorization 
is to have the form I0fl =  (2° • 5b) • (2“ • 5b)(20-2a • 56-2b); consequently, 
a can take any of the values 0, 1, 2, 3 and b can likewise take any of the 
values 0, 1,2,  3. Since combining any such a with any such b yields a 
factorization of the required form, the total number of possibilities is 
4 • 4 =  16. One possibility, namely, a — 2, b = 2, must be discarded, 
since it leads to the factorization

10° =  (22 • 52) • (22 • 52) • (22 • 52) 
treated above. Thus, 15 factorizations occur three times each.
(3) The remaining factorizations occur six times each. In fact, if no two 
of the three factors are equal, then the following six orders for the factors 
are possible:

(2ni • 5b0 • (2re* • 5b0 • (2“3 • 5bj); (2°‘ • 5b>) • (2°3 ■ 5b3) • (2“3 • 5b3);
(2°* • 5b2) • (2a> ■ 5b>) • (2°3 • 5"3); (2a* • 5b2) • (2as • 5b=) • (2°> • 5bl);
(2«3 • 563) • (2° 1 • 5b0 • (2“2 • 5b2); (2a* • 5b3) • (2°2 • 5b2) • (2ai • 5bl).
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Hence the total number of different decompositions of 1,000,000 into 
a product of three factors is

1 +  15 + 784 -  15-3 - 1
i = l  +  i s +  ™

6
1 +  15 +  123 =  139.

18. The factorization of 18,000 into a product of primes is 18,000 — 
24 • 32 • 5. Hence all divisors of 18,000 have the form 2a • 3b • 5°, where 
a, b, c are integers satisfying 0 -S a < 4, 0 = b ^  2, 0 c rS 3. (Note 
that the divisor 1 is gotten by taking a = b = c =  0.) Thus there are 5 
possibilities for a (namely 0, 1,2,  3, or 4), 3 possibilities for b, and 4 
possibilities for c. Since these can be combined in all possible ways, the 
number of divisors of 18,000 is 5 • 3 • 4 =  60.

Let us now find the sum of all the divisors. We want to sum the 
numbers 2“ • 36 • 5C, where a, b, c range through the values specified above. 
If the expression (1 +  2 +  22 +  23 +  24)(1 +  3 +  32)(1 +  5 +  52 +  53) 
is expanded in the usual way, its terms will be precisely these numbers 
2° • 36• 5C (note that 2° =  3° =  5° =  1). So the desired sum is

(1 +  2 +  22 +  23 +  24)(1 +  3 +  32)(1 +  5 +  52 +  53) =  31 • 13 ■ 156

=  62,868.

We present now a variant of this solution. Let m and n be two 
relatively prime positive integers. In this case every divisor of mn can be 
uniquely expressed as the product of a divisor of m and a divisor of n. 
It can be seen from this that if t (N )  denotes the number of divisors of the 
positive integer N, then

r(mn) =  r(m)r(«).

Likewise if a(n) is the sum of the divisors of N, we have

<r(nm) =  o{m)o(n).

In number theory a function f (N )  of the positive integer N is called 
multiplicative iff{mn) = f(m)f(n) whenever m and n are relatively prime. 
Another example of such a function is Euler’s function $(N), the number 
of positive integers ^ N and relatively prime to N  (see the remark to 
problem 14).

Thus t(N) and a(N) are multiplicative functions. Note, however, 
that if m and n are not relatively prime, then the equations r(mn) =  
r(m)r(») and a{mn) — a{m)a{ri) need not hold; for example, r(4) =  3, 
but t(2)t(2) =  2 -2  =  4.

If f{N)  is multiplicative, then f ( n 1n2- - -n k) = f ( n 1)f(n2) - - - f ( n k), 
provided that every pair of the numbers nu . . . , nk are relatively prime. 
Since 18,000 =  24 • 32 • 53, this implies that r( 18,000) =  t(24)t(32)t(53).
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Now if p is a prime, then r(pT) — r +  1, since the divisors of pT are 
1 ,p ,p 2, . . .  ,p T. Hence r ( l8,000) =  5 • 3 • 4 =  60. Similarly we see that 
<r(l8,000) =  cr(24)cr(32)cr(53). Since

nr+1 — 1ff(pr) =1 + p + p2 + ■ • • + pr = E-----,
P -  1

we have <r(l 8,000) =  31 ■ 13 • 156 =  62,868.
Remark. The same reasoning leads immediately to the fact that if N has 

a factorization into prime factors of the form
N  =  P i V 2 ' ■ ■ P k k,

then t(A0. =  («! +  1 )(a2 +  1) • • • (ak +  1),

and a(N) = Pt'+1 
Pi ~

1 Pp+1 ~  i
Pi -  1

Plk+1 ~  1
Pk -  1

19. The factorization of 126,000 into primes is 126,000 =  24 • 32 • 53 • 7. 
Consequently A and B must have the form

A =  2°i • 3&1 • 5Cl • l d\  B = 2a*- 3b2 • 5C* • l d\
Furthermore it is necessary that

max (<3!,n2) - 4, max (blfb^ =  2,
max (cucz) - 3, max (z/x,z/2) =  1,

where max (x,_y) denotes the greater of the two numbers x  and y.
There are 9 ordered pairs (flj,^) with max (fli,a2) =  4; indeed there 

are 5 such pairs with ax — 4 (since a2 can then be 0, 1, 2, 3, or 4), and 
5 pairs with a2 =  4, but the pair (4,4) has been counted twice, so we 
get a total of 5 +  5 — 1 =  9. Similarly there are 5 pairs (6X,62) with 
max {bub̂ ) =  2, there are 7 pairs (c^Cj) and 3 pairs (d^d^. Combining 
these in all possible ways, we get a total of 9 • 5 • 7 • 3 =  945 pairs (A,B).

However, in this enumeration we have been counting pairs of numbers 
which differ only in the order of the two components as different. In fact 
every pair (A,B) with 126,000 as least common multiple except the pair 
A = B =  126,000 was counted twice. Hence the number of different 
pairs (A,B) is (945 -  l)/2 +  1 =  473.

Remark. It can be shown in the same way that if the factorization of a 
positive integer N into primes is

n  = Plmy 2m> ■ ■ ■ pkmk,
then the number of different pairs (A,B) whose least common multiple is N, is 

( 2^ !  +  1)(2m 2 +  ! ) • • •  (2m k +  1) -  1 
2

20. We can write
(1 +  a:5 +  *7)20 =  (1 +  x5 +  x7)(l +  x5 +  x7) ■ • • (1 +  x5 +  x7).
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where there are twenty factors on the right. A typical term in the expansion 
of (1 +  x5 +  x7)20 is obtained by selecting from each factor on the right 
either 1 or x5 or x7, and then multiplying the selected terms together. For 
example, if we took x5 from the first factor, x7 from the second factor, and 
1 from all the other factors we would get the term x5 • x7 =  x12. The 
power of x in such a product will be a sum of 5’s and 7’s. But the number 
18 cannot be represented as a sum of 5’s and 7’s in any way; hence there is 
no term in x18 in the expansion (that is, the coefficient of x18 is zero).

The number 17 can be written in exactly one way as a sum of 5’s and 
7’s: 17 =  5 +  5 +  7. Consequently, the coefficient of x17 is equal
to the number of terms obtained by selecting x5 from two of the factors 
(1 +  x5 -(- x7), x7 from one of them, and 1 from the remaining 17. The 
x7 can be selected from any of the 20 factors (1 +  x3 +  x7). Let us 
discuss for definiteness the case in which it is selected from the first factor. 
Then there are 19 remainine factors. From two of these we must select

/19\
x°; this can be done in I I =  171 ways. The same holds for each of

the 20 possible positions of the x7, so we get a total of 20 • 171 =  3420 
terms in x17. Therefore the coefficient of x17 is 3420.

21. In changing the quarter we can use either 2 dimes or 1 dime or no 
dimes. If 2 dimes are used, then the change can be completed by either a 
nickel or by 5 pennies. Thus we get 2 possibilities in this case.

If one dime is used, the remaining 15<j: must be made up out of 
nickels and pennies. This can be done by using either 3, 2, 1, or no nickels 
(the remainder being made up of pennies in each case). Hence we have 4 
possibilities involving one dime.

Finally, if no dimes are used, we can use either 5, 4, 3, 2, 1, or no 
nickels (the remainder of the 25<ji consisting of pennies in each case). Hence 
we have 6 possibilities involving no dimes.

The total number of ways of changing the quarter is therefore 
2 +  4 +  6 — 12.

22. The number of nickels used in putting together n cents cannot exceed
n

L5
. On the other hand if q is any integer in the range

then we can put together q nickels and n — 5q pennies to make up n cents.
n

The solution is therefore 1.

Remark. The same reasoning shows that if the nickel were replaced by 
another coin having the value of k pennies, then the number of ways to put

n
together n cents using pennies and the new coins would be i- 1.
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23a. In making up n cents out of 1-, 2-, and 3-cent stamps, we can use 
either no 3-cent stamps at all, or one 3-cent stamp, or 2 of them, etc., up 
to a maximum of q = [nj3] of them. In the first case the n cents would 
have to be made up entirely out of 1- and 2-cent stamps, which can be 
done in [nj2] +  1 ways. (See the remark to problem 22 with k — 2.) 
In the second case we must form n — 3 cents with 1- and 2-cent stamps, 
which can be done in [(« — 3)/2] +  1 ways; in the third case we must 
form n — 6 cents, which can be done in [(n — 6)/2] +  1 ways, etc. Let 
n = 3q +  r, where q — [«/3] is the quotient obtained by dividing 3 into n, 
and r is the remainder (thus r =  0, 1, or 2). We then see that in the final 
case (where q 3-cent stamps are used), the remaining r cents must be made 
up out of 1- and 2-cent stamps. This can be done in [r/2] +  1 ways, so we 
get a total of

as the solution to the problem.
We will now show that this sum is equal to the nearest integer to 

(n +  3)2/12, that is, S = N((n +  3)2/12) using the notation introduced on 
page 6). First of all, we note that for any integer m,

m _  1 ( - l ) m
2 4 +  4

Indeed, if m is even, then both the left side and right side are equal to m/2, 
and if m is odd, both sides equal (m — l)/2.

This fact can be used to simplify the expression for S. We have

m
2 .

=  ( -  +  - +
\2 4 4

3 , ( - l ) n\  (n -  3 , 3
------- h :  +  —
2 4 4

n — 3 \

+  (̂  +  ,  +  t f r !
)•

Since there are q +  1 parentheses each containing a f, we have

s  = {q + m + ^  + i ^  + i ^ f l  + . . .  + i= f
\  4 4 4 4

+ I- + — + —  + ••• + ; 2̂ 2 2 2

The terms in the first parenthesis alternate in sign, since (— I)3 =  — 1. 
Therefore this parenthesis is equal to £ if both n and r are even, — J if both
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are odd, and 0 otherwise. We will denote its value by e, and note for 
later purposes that e 2> 0 when r is even.

The terms of the second parenthesis are in arithmetic progression. 
Recalling that the sum of such a progression is the average of the first and 
last terms multiplied by the number of terms (which in this case is q +  1), 
we see that

s _ (t +  1)l + .  +  i ± I ( 5  +  r )

=  (3 +  n  +  r) I  e
4

=  — ( n  +  3 -f r) +  e 
12

( n  +  3 — r ) ( n  +  3 +  r) ,
-- i £

12

12 12

Now |— (r2/12) -f e\ < because if r = 0 or 1, then

1 1 1 
12 +  4 < 2 ’

and if r =  2, we know from the above that e ^  0, so that

1 1 1 
?2 +  4 < 2

Thus S, which is an integer, differs from (n +  3)2/12 by a quantity 
whose absolute values is less than Therefore S  =  N((n +  3)2/12).
23b. The solution to this problem is completely analogous to that of 
problem 23a. Let n =  5q +  r where q =  [n/5], and r =  0, 1, 2, 3, or 4; 
thus q and r are the quotient and remainder when n is divided by 5. The 
number of 5-cent stamps used in making up n cents can vary from 0 to q; 
as in part a we find that if t 5-cent stamps are used, the number of solutions 
is [(n _  5t)/2] +  1. Hence the total number of solutions is



64 S O L U T I O N S

We will now prove that S = N((n +  4)2/20j. As in part a the identity 
[m/2] — m\2 — £ -f- (—l)m/4 shows that

S = (q +  1)1 + (- -l)n ! (~ D r +

+

( - i y

= + ^ +2 2 + i
Again the terms of the first parenthesis alternate in sign, so the sum of 
these terms is £ if n and r are even, — £ if n and r are odd, and 0 otherwise. 
Calling this sum e we note that e ^  0 if r is even. The second parenthesis 
can be evaluated by the formula for the sum of an arithmetic progression 
as in part a; we get

S — (g +  1) |  +  e +   ̂ -

=  2 - ^ ( 3  + n + r) + e 
4

=  ^ (3 +  „ +  r) +  e

(n — r +  5)(/i +  r +  3) ,
----------------------------------- h £

20

_  Q +  4)2 _  Q -  l)2 
20 20

Now if r = 0, 1, 2, or 3 then \—{r — l)2/20 +  e\ ^  2-0 +  \  while 
if r — 4, then e ^  0, so that |— (r — l)2/20 +  ^  | —2ao +  il <  i-
Hence, since S is an integer, S = N((n +  4)2/20).

24. Since only an integral multiple of S10 can be made up out of 10, 20, 
and 50-dollar bills, the 1, 2, and 5-dollar bills must also add up to a 
multiple of S10.

Suppose, therefore, that the l ’s, 2’s, and 5’s add up to 10m dollars, 
and the 10’s, 20’s, and 50’s to 100 — 10m dollars. Here m can range 
from 0 to 10. We will determine the number of solutions for each fixed 
value of m, and then add these together to get the answer to the problem.

By problem 23b, the number of ways of breaking the integer 10m 
into a sum of l ’s, 2’s, and 5’s is A(10m +  4)2/20). On the other hand the 
problem of breaking 100 — 10m =  10(10 — m) into 10’s, 20’s, and 50’s is 
equivalent to that of writing 10 — m as a sum of l ’s, 2’s, and 5’s (because 
everything has merely been multiplied by 10). Hence the number of 
solutions is N(( 10 — m +  4)2/20) =  7V((14 — m)2/20). Each of these 
solutions can be combined with each of the representations of 10m as a 
sum of l’s, 2’s, and 5’s; therefore with this value of m there are
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N((lOm +  4)2/20)Ar((14 — m f(20) ways of changing the $100. Summing 
over the values of m from 0 to 10 we get a total of

=  MO +  10-8 +  29-7 +  58-6 +  97-5 

+  146-4 +  205-3 +  274-2 +  353-2 

+  442-1 +  541-1 

=  10 +  80 +  203 +  348 +  485 +  584 +  615 

+  548 +  706 +  442 +  541 

=  4562.
25. If n is represented as a sum of two positive integers

n = x + y,
then one of the terms must be less than or equal to n/2. This term can 
take the values 1, 2, 3, . . . , [n/2]; all these cases are different, since 
the second term will in these cases be at least n/2. Hence there are [n/2] 
such representations.

26. For any integer k, let Sk be the number of solutions of |x| +  |_y| =  k.
Then the answer to the problem is 51 =  S0 +  +  S2 +  ■ ■ • +  Sod-
Now 5"0 =  1, since |x| +  \y\ =  0 is satisfied only by x =  y  = 0. We will 
show that for k>, 1, Sk = 4k. Indeed, x  must have one of the 2k +  1 
values —k, —k +  1, . . . , k. When x =  —k or x = k, we have only 
one value for y, namely y  =  0. But for each of the other 2k — 1 values 
of x, there are two values for y. Hence

Sk = 1 +  1 +  2(2k — 1) =  4k, and so
99-100

5” =  1 +  4(1 +  2 +  ■ • • +  99) =  1 +  4 — j —

=  19,801.
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27. The problem amounts to that of determining the number of positive 
integral solutions of the equation x + y  + z = n.

Observe first of all that the equation y  +  z =  k (where k is a positive 
integer) has k — 1 positive integral solutions. In fact, in this case y  can 
take any of the values \,2, . . . , k — 1 (y cannot take the value k, since 
then z would not be positive); the corresponding value of z determined 
from the equation will also be a positive integer in each of these cases.

Let us now turn to our equation

x +  y  +  z =  n.

x  can take any of the values 1, 2, 3, — 2 (it could not take
any larger value, since for x > n — 2, the quantity x y -\- z would be 
at least (n — 1) +  1 +  1, which exceeds n). y  and z satisfy the equation

y  + z = n — x;

hence for any fixed value of x there are n — x — 1 possible pairs of 
values for and z. It follows from this that the total number of different 
solutions is

(n — 2) +  (n — 3) +  • • • +  n — (n — 2) — 1

— (n — 2) +  (n — 3) +  ■ • • +  1

=  ( m  ~  1) ( h  ~  2)

2

28a. Suppose n = x y  z where x, y, and z are nonnegative integers. 
We will compute the number of such representations satisfying the 
inequalities x ^  y  ^  z. This gives the answer to the problem because 
any other representation can be reduced to one of this type by reordering 
its terms (which is allowed by the conditions of the problem).

We now introduce the quantities a, b, c defined by a — z, b =  y  — z, 
c = x — y. These numbers are nonnegative integers, and solving for 
x, y, z in terms of them we get z = a, y  = z- \-b  = a + b, x  = y  c =  
a +  b +  c. Therefore n = x -\- y  z = a 2b 2c. This equation 
can be interpreted as a representation of n as the sum of a l ’s, b 2’s and 
c 3’s. So corresponding to each representation n = x -\- y  z we have 
associated a partition of n into a sum of l ’s, 2’s, and 3’s. For example, to 
the representation 10 =  5 +  3 +  2 would correspond the partition 
1 0 = 1  +  1 +  2 +  3 +  3, since a — 2, b =  I, c = 2. Conversely if a, b, 
c are any nonnegative integers with n = a +  2b +  3c, then putting 
x = a b -\- c, y  = b -\- c, z = c gives n =  x  +  y  +  z and x ^  y  5s z ^
0. The correspondence can be visualized geometrically as follows.
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Draw a row of x dots, beneath it a row o fy  dots, and beneath this a 
row of z dots. The case for x =  5, y  = 3, z =  2, n =  10 is shown:

Now each column contains either 1,2, or 3 dots, thus giving us a partition 
of n into l ’s, 2’s, and 3’s. The inverse operation is also seen at once from 
this picture.

From what we have shown it follows that the total number of 
representations n = x  +  y  +  z, x ^  _y ^  z 2; 0, is equal to the num
ber of ways of breaking n into a sum of l ’s, 2’s, and 3’s. But this is 
the number we determined in problem 23a, where it was shown to be 
N((n +  3)2/12).

28b. If n =  x +  y  +  z, where x, y, and z are positive integers, then 
n — 3 =  (x — 1) +  — 1) +  (z — 1), where now x — 1, y  — 1, and
z — 1 are nonnegative. Conversely each representation of n — 3 as a 
sum of 3 nonnegative integers gives rise to a representation of n as a sum 
of 3 positive integers, obtained by increasing each term by 1. This fact 
reduces our problem to part a where, however, n must be replaced by 
n — 3. Therefore the answer is N(nz/ 12).

29. Since z =  n — x — y, a solution is completely determined once x and 
y  are specified. Let us see what conditions x and y  must satisfy in order 
that x, y, and z — n — x — y  will satisfy the given inequalities.

1. The inequality z ^  x +  y  yields n — x — y  ^  x + y, which is 
equivalent to x +  y  2s n/2.

2. The inequality y  < x  +  z yields y  ^  x + n — x — y, which is 
equivalent to y  ^  nj2.

3. The inequality x ^  y  +  z yields x sS y  +  n — x — y, or x gj n/2.
4. The inequalities x >  0,T >  0, z >  0 now become x >  > o,

x + y  < n.
Consequently the problem is to determine the number of pairs of integers 
(x,y) with 0 <  x sS n/2, 0 <  y  ^  n/2, n/2 ^  x +  y  < n. These conditions 
can be interpreted geometrically as follows. We draw a rectangular 
coordinate system in the plane as in fig. 25, and let (x,y) be the coordinates 
of a point in this system. The three lines whose equations are x =  n/2, 
y  = n/2, and x -j- y  = n/2 form the shaded triangle, and our inequalities 
amount to the requirement that (x,y) must be inside this triangle or on its 
boundary, but must not be one of the vertices M, N, P. So we must 
determine the number of points with integer coordinates in this region 
(indicated by black dots in the figures). It is now necessary to distinguish 
two cases, according as n is even or odd.
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Fig. 25

Case I : n even. Here w/2 is an integer, and we have the situation 
shown in fig. 25a (where n = 12). There are n/2 +  1 dots on the segment 
OM. Hence the total number of dots in the square OMPN is (njl +  l)2. 
Of these points, n/2 +  1 are on the diagonal, and so the number of points 
to the right of the diagonal is i{(n/2 +  l)2 — (n/2 +  1)} =  n(n +  2)/8. 
Therefore the number of dots in the triangle MNP (including the vertices) 
is n/2 +  1 +  n(n -\- 2)/8. Subtracting the 3 vertices we get

n  ̂ x n(n +  2) _  (n — 2){n +  8)
2 ~ H 8 8

as the answer.
Case 2: n odd. In this case n/2 is not an integer, so we have the 

situation in fig. 25b (where n — 11). Here the dots in the square OMPN 
form a smaller square S, and we want the number of dots to the right of 
the diagonal of S. The number of dots on OM is 1 +  (n — l)/2 =  (n +  l)/2, 
so S contains [(« +  l)/2]2 dots. Of these, (n +  l)/2 are on the diagonal, 
and so

are to the right of the diagonal. (Note that the vertices M, N, P cause no 
trouble since they do not have integer coordinates.)

30. Denote the lengths of the sides of the triangle by .v, y, and z. Then 
we must have x -\- y  + z = n. Moreover, ,v, y, z must satisfy the 
inequalities

x < y  + z, y  < x + z, z < x  +  y,

since the length of a side of a triangle must be less than the sum of the 
lengths of the other two sides. Conversely, any quantities x, y, z which
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satisfy the above conditions will be the sides of a triangle of perimeter n. 
Thus the problem is similar to the preceding one, but differs from it in 
two respects. First, the required inequalities contain a <  sign where there 
was a sS sign before. Secondly, solutions differing only in the order of 
the terms must now be considered as the same, since they yield congruent 
triangles. For the moment we will ignore this second condition, and 
determine the number N  of ordered triples x, y, z with * +  +  z =  n,
x <  y  +  z, y  < x  -|- z, z < x  +  y. As in problem 29, z is determined 
from x and y  by the fact that z = n — x — y. The conditions on x and y  
now amount to 0 <  x <  n/2, 0 <  y  < n/2, n/2 <  x +  y  < n. This means 
that in fig. 25, the point (x,y) must be in the interior of the triangle MNP. 
Therefore, to find N  we need merely subtract from the answer to problem 
29 the number of dots on the boundary of MNP which were counted 
there. (Recall that the vertices were not counted in problem 29.) For odd 
n there are no dots on the boundary, so N = («2 — l)/8. For even n, each 
side of the triangle contains, aside from the vertices, n/2 — 1 dots. Hence, 
in this case,

JV =  Q. +  8)(n - 2 ) _ 3/ « _ 1\ = ( „ ^ 2 )" +  8 - L 2
8 \  2 /  8

_  (n -  2)(n -  4) _  n2 -  6n +  8 
~ ~  8 ~ ~  8

In this enumeration every scalene triangle A (that is, a triangle with 
no two sides equal) has been counted 6 times. For if the sides of A are 
p , q, r, then the solutions

1. x = p ,  y  = q, z = r
2. x = p, y  =  r, z = q
3- x =  q, y  = p , z = r
4. x = q, y  = r, z = p
5. x = q, y  = r, z = p
6. x =  r, y  = q, z = p

all correspond to A.
Every proper isosceles triangle (two of whose sides have length p, 

while the third side has length q, where q ^  p) has been counted 3 times, 
for the solutions

1 ■ x = p, y  = p, z = q
2. x  =  p, y  = q, z = p
3. x =  q, y  = p, z = p

all correspond to this triangle.
Finally, an equilateral triangle (if there is one) has been counted only 

once. Therefore N  = 6S +  3P +  E, where S  is the number of scalene
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triangles, P is the number of proper isosceles triangles, and E is the 
number of equilateral triangles. Our problem is to compute S +  P +  E — 
T, the total number of triangles. From the formula N = 6S +  3P +  E 
we see that S = (N — 3P — E)/6; therefore

N - 3 P  -  E N  +  3P +  5E N  +  31 +  2E
T = -------2------- + P  + E = -------------------=  ------- t ------- .O 0 0

where I  = P + E is the total number of isosceles triangles (proper or 
equilateral). Since we have already found an expression for N, it remains 
only to compute E and I. Now E =  1 if n is a multiple of 3 and E =  0 
otherwise (since an equilateral triangle of perimeter n has a side length of 
n/3). To find /  we must determine the number of solutions of the equation 
2x +  y  =  n which satisfy the conditions x  >  0, y  >  0, 2x > y. Putting 
y  — n — 2x, these conditions become x  >  0, n — 2x >  0, 2x >  n — 2x, 
or equivalently n/4 < x < n/2.

Since n and x  are integers, these inequalities are equivalent to 
«/4 <  x 5S (n — l)/2. There are [(« — l)/2] — [n/4] such values of x, 
namely x =  [n/4] +  1, [n/4] +  2,. . . , [(n — l)/2]. Hence

1 = "n -  r [n]
L 2 J .4.

We can now collect the above results to obtain a formula for T. It is 
convenient to write n =  12  ̂+  /•, where q = [nj 12] is the quotient obtained 
by dividing n by 12, and the remainder r satisfies 0 ^  r < 11. The 
formula for T depends on r as follows.

(1) If r =  0, then
n2 — 6n +  8N

8
j  _  n _  j n _  n — 4 

~  2 4 ~  4
E 1
T =  N I  E =  n2 -  6n +  8 n - 4  1 =  n_2

6 ' 3 48 8 +  3 48 '
(2) If r =  1, then

n2 -  1N =

/  =

8
n -  1

T  = i + ! ^ i n2 +  6n — 7
48 8 48
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(3) If r =  2, then
n2 — 6n +  8N

8

I — n i n — 2 _  n — 2 
~  2 4 ~  4

E =  0
n2 — 6n +  8 n — 2 n2 — 4T =

48
+

8 48
(4) If r =  3, then 

n2 -  1N

I

8

n — I n — 3 n +  1

£ =  1

«2 — 1 _j_ » +  1 _j_ |  _  n2 +  6n +  21
48 8 3

In the same way we obtain:

n2 -  16

48

(5) If r = 4, then T =

(6) If r =  5, then T =

(7) If r =  6, then T =

(8) If r =  7, then T =

(9) If r = 8, then 7  =

(10) If r = 9, then T

(11) If r =  10, then T =

(12) If r = 11, then T

48

n2 +  6n — 7 
48

n2 +  12 
48

w2 +  6n +  5 
48

n2 — 16 
4 8 ~

n2 +  6n +  9 
48

n2 — 4
48

n2 +  6n +  5
48
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Note that in all these cases the constant term of the polynomial in 
the numerator is less than half the denominator. We can therefore sum 
up the above results as follows:

If n is odd, T = N((n2 +  6«)/48); if n is even, T =  N(n2/48).

31a. Consider a line segment of length n as shown in fig. 26. Any solution 
of the equation x x +  • • • +  x m = n in positive integers corresponds to a 
decomposition of this segment into m pieces whose lengths are positive 
integers. The m — 1 end points of these pieces (other than P0 and Pn) 
must be chosen from among the n — 1 points Px, P2, . . . , Pn_x shown in

the figure. This can be done in j j ways, and this is therefore the
answer to the problem. ' '

Po P\ Pz Pn-1 Pn

Fig. 26

31b. If Ay +  • • • +  xm = n, where xx, . . . , xm are nonnegative integers, 
thenCxy +  1) +  (x2 +  !) +  ••• +  (xm +  1) =  n +  m, where now ^ +  1, 
x2 +  1, . . . , x m +  1 are positive. Conversely, ify^ +  • • • +  y m = n +  m 
with y x, . . . , y m positive, then (ji — 1) +  • • • +  (ym — 1) =  n, where 
y x — 1, . . . , y m — 1 are nonnegative. So our problem is equivalent to

( A  _L  —

m 1

32a. Consider any partition v. n = nx +  n2 +  ■ ■ ■ +  nk with the parts 
arranged in decreasing order, so that nx ^  n2 ^  ^  nk. Draw a row
of nx dots, beneath it a row of n2 dots, etc., as shown below for the 
partition 10 =  5 +  2 +  2 +  1.

This figure is called the Ferrors graph of the given partition tt. If the graph 
is read by columns instead of rows we obtain a new partition tt' of n, 
called the conjugate of tt. For example, the figure above shows that the 
conjugate of 5 +  2 +  2 +  1 is4 +  3 +  1 +  1 +  1.

If 77 is a partition of n into at most m parts, then its Ferrars graph 
will have at most m rows. Consequently the conjugate partition tt’ will 
have all its parts 55 m. The converse is also true, and so we have established 
a one-to-one correspondence between the two types of partitions.
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Remark. For m = 3 the theorem just proved says that the number of 
partitions of n into at most 3 parts is equal to the number of partitions of n 
into l’s, 2’s, and 3’s. In problem 23a it was shown that this latter number is

{n + 3)2j
N

12

32b. Let 7t: n = x x +  xz +  • • • +  x m be a partition of n into m distinct 
parts, arranged so that xq >  x 2 > • • • >  xm. Since xm ^  1, we must have 
x m_i ^  2, xra_2 > 3, . . . , and finally xq ^  m. Therefore the Ferrars 
graph of 7t includes the triangular array of dots shown in fig. 27a (where 
m =  4). There are 1 + 2  +  3 +  • • • + / «  =  mini +  l)/2 dots in this 
triangle.

Suppose now that this triangle is removed, and that the remaining 
dots are then shifted to the left as shown in fig. 27b. They then constitute 
a partition of n — m{m +  l)/2 into at most m parts. Conversely, given 
a partition of n — m(m +  l)/2 into at most m parts, we can adjoin these 
parts to the triangle, and thereby obtain a partition of n into m distinct 
parts.

Fig. 27

33a. Any positive integer m can be written in the form m — 2k • q, where 
q is odd (if m is odd, then k =  0). Given a partition of n into distinct 
positive integers, we express each term in this form. Then we rearrange 
the terms, taking first those with q =  1 in increasing order, then those 
with q = 3 in increasing order, etc. Thus the partition becomes

n = 2a‘ +  2a* +  • • • +  2a' +  2bi • 3 +  2b> • 3 + --------2b> ■ 3
+  2ci • 3 +  2C2 • 5 +  • • • +  2C‘ • 5 +  • •

To this partition we can associate the partition of n into a sum of odd 
parts, consisting of 2Ul +  • • • +  2ar l ’s, 2bl +  ■ • • +  2bs3’s,2<:i +  • • • +  2C‘ 
5’s, etc. For example, to the partition

17 =  6 +  5 +  3 +  2 +  1 =  2 * 3 + 5  +  3 +  2*l  +  1 
=  1 +  2-1 +  3 +  2- 3 +  5 

would be associated the partition

1 +  1 +  1 +  3 +  3 +  3 +  5.
Conversely, from a partition of n into odd parts we can determine 

uniquely a partition of n into distinct parts to which it is associated.
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Suppose that in the given partition into odd parts there are A l ’s, B 3’s, 
C 5’s, etc. Write the numbers A, B, C, . . . in the binary system, i.e. 
express them as sums of distinct powers of 2:

A =  2ai +  2“2 +  • • • +  2“r 
B =  26i +  26’ +  • • • +  26»
C =  2e» +  2e* H----- +  2C(, etc.

Then the partition 
« =  2“' +  • • ■ +  2“r +  26‘ • 3 +  • • • +  26* • 3 +  2[i • 5 H-----

+  2C‘ • 5 +  ’ • •
is the only partition of n into distinct parts to which the given partition 
is associated under the correspondence described above.
33b. This is a generalization of part a and can be solved similarly. Let 
there be given a partition of a number n into parts which are not multiples 
of k; let be the number of times 1 occurs in this partition, . . . , 
the number of times k — 1 occurs, j fc+1 the number of times k  +  1 occurs, 
etc.:

n — ' 1 +  • • - +  sk_x(k — 1) +  sk+1(k +  1) +  • • '

Now write each of the numbers j1( . . . , j ft+1, . . .  in its A>ary form:

si =  t f 1 +  9“  ■ & +  9“  ■ & *+9“  ■ &* +  • • • .

4 . ,  - 9i*-" +  9l*-, ’<= +  q 't" ^  +  q ' f vk> +  • • • 
st+1 =  qf+"k +  q \‘*"k +  q[‘*‘'k‘ +  <,“« ’<:» +■■■

where the “k-ary digits” q^\ q{x \  q£\ q£\ . . . , etc., can assume the values 
0, 1, 2, . . . , k  — 1. In this case we can associate to the given partition 
of n a new partition in which no part occurs more than k — 1 times:

go11 terms q{x ] terms qj11 terms
+  2 +  • • • +  2 +  2k +  • • • +  2k +  2k2 + ------b 2/c2 H------

_  -  J  I  _  J  V,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J
-----------------------V----------------------'  V “  V

q{0z) terms q\2) terms q^] terms

+  (k — 1) -b ' ' ■ +  (A: — 1) +  (/c — l)fc +  ••• +  (& — l)k
v  j  j

gofc-1) terms terms
+  (k +  1 )k2 +  • • • +  (k +  1 )/e2 +  • • • .

____________ y_____________ >

q{2+1) terms
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Conversely, from any partition of n into parts none of which occurs 
more than k — 1 times, one can recover the original partition of n into 
parts not divisible by k. It follows from this that for any n there are as 
many partitions of the one kind as of the other.

Second solution. We present here another essentially different proof 
of the theorems of 33a and 33b; it suffices to consider part b, since part a 
is a special case of it.

Let A be the set of all partitions of n in which at least one part is 
divisible by k, and let B be the set of all partitions of n in which some 
part occurs at least k times. It suffices to show that #{A) = #{B), and 
we will do this by using the principle of inclusion and exclusion to 
compute #(A) and #(B).

Let At be the set of all partitions of n in which the integer rk occurs 
as one of the parts. Then A — Ax U  A2 U  A3 U  • • •, where there are 
actually only a finite number of non-empty terms on the right (since Ar is 
empty as soon as rk >  n). By the principle of inclusion and exclusion,

#{A) =  +  #(A 3) +  • • •
-  #{A1 n  a 2) -  M A 1 d a 3) -------
+  #(A i n  a 2 n  a 3) +  • • • (l)

Similarly, let Br be the set of all partitions of n in which the integer r 
occurs at least k times among the parts. Then B = Bx U B2 U B3 U • • •, 
and

#{B)  =  # ( £ , )  +  #{B 2) +  # ( * 3) +  • ■ •

-  n  b 2) -  #{B, n  b 3) -  ■ ■ •

+  # (B 1 r\ B2 n  B3) -f- • • • (2)

We next show that # (/lr) =  #{BT). Given any partition n =  
kr +  Xj +  x2 +  • • • +  x m of the set Ar we can associate to it the partition

A- tim es

n r +  r +  -- ' -\- f +  Jfi +  -̂ 2 "1“ ‘ ' t  x m
of the set BT, and conversely. This sets up a one-to-one correspondence 
between the elements of Ar and Br\ hence # (/lr) =  #(Br). By the same 
reasoning

#(A r n  Ag) = #{Br n  b s), #{At H A s n  At) = #{Br n  Bs n  Bt),

etc. Therefore all terms on the right-hand side of (1) are equal to the 
corresponding terms of (2), from which it follows that #(A) = #(£).



76 S O L U T IO N S

III . CO M BIN A TO RIA L PROBLEM S 
ON THE CHESSBOARD

34a. An n x n chessboard (see fig. 28, where the case n — 8 is illustrated) 
has n rows and n columns. For none of the rooks on the board to 
control the square on which another lies, it is necessary and sufficient that 
no two rooks lie in the same row or in the same column. Hence the total 
number of rooks cannot exceed n\ on the other hand, it is possible for n 
rooks to be arranged on the board in such a way that none of them 
controls the square on which another one lies: for example, it would 
suffice to put them on the squares of one of the principal diagonals of the 
chessboard.

Fig. 28

We will now determine how many different arrangements of n rooks 
satisfy our conditions. Let us call the rook in the first column the first 
rook, that in the second column the second rook, . . . , and that in the //-th 
column the /?-th rook. The first rook can lie in any of the n rows. For any 
choice of the row in which it lies, there remain n — 1 possible rows in 
which the second rook could lie (namely, all rows except that in which 
the first rook lies); once the locations of the first and second rooks are 
chosen, there remain n — 2 possible rows in which the third rook could 
lie, etc. Finally, there will be only one possibility left for the last rook 
once the locations of the first n — 1 have been specified. Pairing each of 
the n different possibilities for the first rook with each of the corresponding 
n — 1 possibilities for the second rook, we obtain a total of n(n — 1) 
possible arrangements of the first two rooks; arguing similarly, there 
will be n(n — l)(/7 — 2) possible arrangements of the first three rooks, 
n{n — 1)(« — 2\(n — 3) possible arrangements of the first four rooks, . . . , 
and finally n(n — 1)(« — 2) • • • 2 • 1 different arrangements of all n rooks.
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Thus the total number of admissible arrangements of the rooks is

1 • 2 • 3 ■ • • • (n — 1 )n =  n !

In particular, for an ordinary chessboard (that is, for n = 8), we 
obtain:

8 ! = l - 2 - 3 - 4 - 5 - 6 - 7 - 8  =  40,320 
different arrangements.

34b. It is impossible for less than n rooks to control all squares of an 
n x n chessboard. In fact, if there were less than n rooks on the board, 
there would be a column on which there was no rook and a row on which 
there was no rook; the square common to this row and column would 
then not be controlled by any of the rooks. On the other hand, it is 
obviously possible to arrange n rooks on the board in such a way that they 
control every square of the board (see, for example, fig. 28).

If n rooks on an n X n chessboard control every square of the board, 
then there is either one rook in each column or one rook in each row. 
For otherwise there would be a row and a column, neither of which 
contained any rooks; and the square common to this row and column 
would not be controlled by any of the rooks. Conversely, if there is 
either one rook in every row or one rook in every column, then these rooks 
will control the entire board. The number of ways of arranging n rooks, 
one in each column, is (The first rook can be placed on any of the n 
squares of the first column; no matter which square it is put on, the 
second rook can be put on any of the n squares of the second column, etc.) 
The number of ways in which n rooks can be arranged, one in each row, 
is likewise nn. It would seem at first glance that the number of arrange
ments of n rooks for which the rooks controlled all squares of the board 
would be equal to //" +  nn = 2n11. But in this enumeration we have 
counted twice each arrangement of the rooks for which there is one 
rook in each column and simultaneously one rook in each row. Since the 
total number of such arrangements is n\ (see solution to part a), the 
correct answer is 2nn — n\

In particular, for an ordinary chessboard (n =  8), we obtain
2 • 88 -  8! =  33,514,312

different arrangements.

35a. Consider the diagonals which run from lower left to upper right on 
an ordinary 8 x 8  chessboard (for short, we will call these the positive 
diagonals). There are 15 such diagonals: the 8 diagonals which begin on 
the squares of the first column and the 7 diagonals which begin on the 
bottom squares of the other seven columns (fig. 29). If no bishop controls 
the square on which another lies, then there cannot be more than one
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bishop on each of these diagonals; consequently, the total number of 
bishops cannot be more than 15. But not all 15 diagonals can be occupied, 
since the first and last of them each consist of a single square, and a 
bishop on either of these two squares would control the other square. 
Consequently, at most 14 of the 15 diagonals can be occupied; therefore 
the number of bishops in such an arrangement cannot exceed 14.

On the other hand, 14 bishops can be arranged in the required way, 
as is shown, for example, in fig. 29. Hence this is the greatest number of 
bishops which can be arranged on an 8 x 8 chessboard in such a way that 
no bishop lies on a square controlled by another. In the more general 
case of an n X n board, the same reasoning shows that the maximum 
number of bishops is 2n — 2.

Fig. 29

35b. We will show that at least 8 bishops are needed to control all squares 
of an 8 x 8 board. To do this, we will treat the white and black squares 
separately, showing that there must be at least 4 bishops on each of the 2 
colors. We will call a bishop black or white according as it is on a black 
or white square. If the black squares are rotated counterclockwise through 
an angle of 45° they assume the form of fig. 30a. It is convenient to trans
form this figure into fig. 30b, where the bishops now move horizontally and 
vertically, i.e. they have become rooks. The only reason for making this 
change is that the eye is apparently better able to visualize the moves of a 
rook than those of a bishop.

We now see that at least 4 rooks are needed to control the squares of 
fig. 30b since it contains a 4 X 4 square to which problem 34b can be 
applied. Thus we need at least 4 black bishops, and similarly we need at 
least 4 white bishops.

On the other hand, 8 bishops can in fact be arranged so as to control 
every square (see, for example, fig. 31a).

More generally, let n =  2k be any even integer. Then we can prove 
that at least n bishops are needed to control the n x n chessboard. For if 
the black squares are rotated through 45° as before, and then redrawn so
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a. b.

Fig. 31
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that the bishop becomes a rook, there will be a k x k square contained 
in the new figure. Therefore at least k black bishops are needed, and the 
same applies to the white bishops. This gives a total of at least k +  k =  n 
bishops.

On the other hand, n bishops are enough to control the board, since 
they can be placed on the /c-th column from the left as shown in fig. 31b 
for n =  10.

In the case of odd n the situation is somewhat different in that the 
number of white squares differs from the number of black squares. 
However, even in this case the problem can be solved by the same method 
as in the case of-an 8 x 8  board. Consider, for example, the 9 x 9  
board illustrated in fig. 31c. If the black squares are rotated and redrawn

a. b.

Fig. 32

as before we obtain fig. 32a while the white squares give rise to fig. 32b. 
The first of these figures contains a square of side 4, and the second 
contains a square of side 5. Hence we need at least 4 +  5 =  9 bishops 
to control the board. This number is also sufficient, since 9 bishops can 
be arranged as in fig. 31c.

In general, if n =  2k +  1 is any odd number, then the same reasoning 
shows that a total of k +  (k +  1) =  n bishops are needed. This is 
because for even k the transformed white squares (white being the color of 
the corners) contain a (k +  1) X (k +  1) board, and the transformed 
black squares contain a k x k board. For odd k the opposite holds, i.e., 
the transformed white squares contain a k  x k board and the trans
formed black squares contain a (k +  1) x (k +  1) board. A total of n 
bishops is also sufficient to control the entire board, since for example 
they can be placed on the middle column.

36a. Since a white bishop controls only white squares and a black bishop 
controls only black squares, the problem of constructing a maximal
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arrangement of bishops none of which lies on a square controlled by 
another can be split into two independent parts; to construct a maximal 
arrangement of white bishops such that no bishop lies on a square con
trolled by another, and the corresponding problem for the black bishops. 
But in the case of even n, the union of all the black squares on the board 
and the union of all the white squares are congruent: one can be obtained 
from the other by rotating the board through 90°. Therefore the number 
of white bishops in a maximal arrangement is equal to the number of 
black bishops. Since these two numbers add up to 2n — 2 (by problem 
35a), each must be equal to n — 1. We obtain all admissible arrange
ments of 2n — 2 bishops on the board by pairing each admissible 
arrangement of n — 1 white bishops with each such arrangement of n — 1 
black bishops; but this is just the square of the number of arrangements 
of n — 1 white bishops.

36b. The solution of this part is completely analogous to that of part a.

37a. Let there be given an arrangement of In — 2 bishops on an n x n 
chessboard such that no bishop controls another (see problem 35a). 
On each square of the board write the number of bishops controlling that 
square. A square occupied by a bishop is marked with a 1, since we are 
making the convention that each bishop controls itself. No square is 
marked with a 0, since if there were such a square we could place a new 
bishop on it without attacking any of the others, thus contradicting the 
maximality of the given arrangement. The corner squares are marked 
with l ’s, since there is only one diagonal through such a square and there 
can be only one bishop on it. The non-corner squares are marked with 
either a 1 or a 2, since there are two diagonals through such a square, and 
there can be at most one bishop on each of these.

Of the four corners of the board, at least two are not occupied by 
bishops; for if more than two were occupied, we would have two bishops 
attacking each other. Hence there are at least 2n squares marked with a 1 
(the 2n — 2 squares occupied by bishops and the corners not occupied 
by bishops). Let S  be the sum of all the numbers written on the chess
board. Since at least 2n of the terms added to form S  are l ’s and the 
other n2 — 2n terms are at most 2, we have

S C 2n +  2(n2 — 2n) — n(2n — 2).
Now suppose that in the given arrangement there are B bishops on 

the boundary and /  bishops in the interior of the board (thus B +  /  =
2n — 2). A bishop on the boundary always controls exactly n squares 
(including the one it occupies); for example, if a bishop lies on a square on 
the top or bottom row, it will control exactly one square in each column.

On the other hand, a bishop on an interior square controls at least
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n + 1 squares. But when a bishop attacks a square it contributes one 
unit towards the number written on that square; therefore we have

S  ^  nB +  (n +  1)/
=  n(B +  /) +  /
-  n{2n -  2) +  /.

Comparing this with the upper bound we previously found for S, we get

n(2n — 2) +  /  ^  n(2n — 2),

and so 0. Of course this implies that /  =  0, so that all of the bishops 
are on the boundary.

37b. Consider an arbitrary outer square other than a corner square of the 
board (for example, the square in the bottom row marked by a circle in

Fig. 33

fig. 33). Draw the two diagonals which pass through this square; these 
diagonals end at two other outer squares, which arc marked by crosses in 
fig. 33. Now draw the other diagonals through the points marked by 
crosses; these diagonals will meet at an outer square of the board, 
the square which is symmetric through the center of the board to the 
original square (in fig. 33 this latter square is also marked with a circle).

Now consider any arrangement on the board of 2n — 2 bishops in 
which no bishop lies on a square controlled by another. By virtue of 
the result of part a, all the bishops must be located on outer squares of 
the board. If one of the bishops is located in the bottom row but not in a 
corner (as marked by a circle in fig. 33), then the squares marked by 
crosses will be empty (since they arc controlled by the bishop in the 
bottom row). Furthermore, there must be a bishop in the square marked 
with a circle in the top row, since otherwise there would be less than the 
maximum number of bishops, as a bishop could be placed on the latter 
square without controlling any of the others. Conversely, if one of the 
squares marked by a cross is occupied by a bishop, then the other is also
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occupied, and the two squares marked with circles are empty. Thus we 
have two possibilities for the arrangement of the bishops on the four 
marked outer squares: either there are bishops on the squares marked 
with circles and not on those marked with crosses, or vice versa.

Any of the n — 2 squares of the bottom row which are not corner 
squares can be taken as the one marked with a circle; thus we obtain 
n — 2 different rectangles of the sort constructed above (with vertices at 
the two crosses and the two circles). In each of these rectangles we must 
put a pair of bishops on opposite vertices. It is clear that for each rec
tangle, the choice of the pair of opposite vertices is independent of the 
choice for any other rectangle. By combining each of the two possible 
choices for the first rectangle with each of the two possible choices for the 
second, each of the two possible choices for the third, .. . , and each of the 
two possible choices for the (n — 2)nd, we obtain a total of 2n~2 different 
possibilities. We now have only to consider the corner squares, since we 
have already taken care of all the bishops which do not lie on corner 
squares, of which there are a total of 2(n — 2). We are left with 
two bishops which we can put on corner squares in any way such that 
neither lies on a square controlled by the other; this means simply that 
the bishops are not on opposite ends of a diagonal, and there are four 
different arrangements which satisfy this condition (one bishop must lie 
on each of the principal diagonals, giving two choices for the one on the 
positive diagonal and two choices for the one on the negative diagonal). 
Combining these four ways of arranging bishops on the corner squares 
with the 2"-2 ways of arranging bishops on the other squares, we obtain a 
total of 4 x 2"~2 =  2n different arrangements of the 2n — 2 bishops. 
Thus, the total number of admissible arrangements is 2n.

In particular, for n =  8, we obtain a total of 28 =  256 different 
arrangements.

Remark. The assertion of problem 36a follows from the answer to this 
problem; for even n, 2n/2 is an integer, and 2n = (2n/2)2.

38a. It was shown in problem 35 that the minimum number of bishops 
needed to control the entire board is 8, of which 4 must be placed on 
black squares and 4 on white squares. If there are x  ways in which 
the black squares can be controlled by 4 bishops and y  ways in which the 
white squares can be controlled by 4 bishops, then the answer to the 
problem is xy (since each way of controlling the black squares can be 
combined with each way of controlling the white squares to produce a 
way of controlling the entire chess board). But x = y, since the union 
of the white squares is congruent to the union of the black squares. 
Therefore we need merely compute x, and the answer will then be x2.

To calculate x  it is convenient to make the same transformation as in
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problem 35, so that the black squares are as in fig. 34, and the bishops 
move horizontally and vertically, i.e., they have become rooks. The 
question is, in how many ways can 4 rooks be placed on this board so as to 
control it?

Suppose that one of the 4 middle rows did not contain a rook. Then 
all of its squares would have to be controlled vertically; but since 
there are at least 5 such squares, this is impossible. Hence there must be 
one rook on each of the 4 middle rows. Furthermore, there must be a 
rook on each of the 3 middle columns, for otherwise the 4 squares at 
the top and the 4 squares at the bottom would not be controlled. Con
versely, if there is a rook on each of the 4 middle rows and each of the 3 
middle columns, then the board is controlled.

We now have to distinguish two cases. In case 1, one rook is placed 
in the lightly shaded area A of fig. 34; the other three must then be in the

Fig. 34

heavily shaded rectangle B. Case 2 is where all four rooks are in B. 
In case 1 there are 12 ways to place a rook in area A; once it has been 
placed, the row on which it lies cannot contain another rook. Hence the 
other three rooks must be placed in B so as to occupy each column of B 
and each of the three remaining rows of B. This can be done in 3! =  6 
ways (see problem 34b). Therefore there are 12 • 6 =  72 ways in which 
case 1 can occur.

In case 2 one column of B must contain 2 rooks, and the other 2 
columns contain one rook each. The column with 2 rooks can be 
selected in 3 ways, and once it is chosen, the rooks can be placed on it in
/ 4\
I2/ 6 ways. For the other 2 rooks there remain 2 rows and 2 columns

to be controlled, so they can be placed on the board in 2 ways. This gives a 
total of 3 • 6 • 2 =  36 solutions under case 2. Hence x =  72 +  36 =  108, 
and x2 =  11,664.

38b. As in part a we need merely compute the number x of ways in which
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the black squares can be controlled by 5 bishops; the solution is then x2. 
Transforming the black squares as before, we obtain fig. 35, where the 
bishops are now replaced by rooks. If one of the 5 middle columns did not 
contain a rook, each of its squares would have to be controlled horizontally, 
which is impossible, since there are at least 6 such squares. Hence there is 
one rook on each of these columns. Also, each of the 4 middle rows must 
contain a rook in order to control the 6 leftmost squares and the 6 right
most squares. Conversely, these conditions are sufficient to control the 
board. As before, there are 2 cases. In case 1 there is one rook in the 
lightly shaded area A and the other 4 are in the heavily shaded area B. 
Case 2 is where all 5 rooks are in B. In case 1 we can put a rook in A in 18 
ways. This eliminates one column of B, leaving 4 rows and 4 columns to
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Fig. 35

be controlled. This can be done in 4! =  24 ways by problem 34b. Hence 
we obtain 18 • 24 =  432 solutions in this case. In case 2, one row of B 
must contain 2 rooks and the other 3 rows contain 1 rook each. The row 
containing 2 rooks can be chosen in 4 ways; once it is chosen the 2 rooks

can be placed on it in =  10 ways. Then there are 3 rows and 3 columns

left to be controlled by the other 3 rooks, so they can be distributed in 
3! =  6 ways. Thus we get 4 • 10 • 6 =  240 solutions in this case. Hence 
x =  432 +  240 =  672, and x2 =  451,584.

38c. We know from problem 35b that to control the 9 x 9  board of fig. 
31c we must have 4 bishops on the.black squares and 5 bishops on the 
white squares. Let x be the number of ways to control the black squares 
with 4 bishops, and y  the number of ways to control the white squares 
with 5 bishops; then the answer to our problem is xy. As before, we 
transform the black squares to fig. 36a and the white squares to fig. 36b. 
To calculate x, notice that in fig. 36a each of the 4 middle columns must be
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occupied by a rook (for if such a column were empty its squares would have 
to be controlled horizontally, which is impossible since there are more 
than 4 such squares). Similarly each of the 4 middle rows must be occupied. 
Conversely, these conditions suffice to control the board. Hence, by 
problem 34b, x =  4! =  24.

The calculation of is more difficult. In fig. 36b we see as before that 
each of the middle 3 rows must be occupied by a rook. Suppose that one 
of the two rows marked by arrows was not occupied. Then its squares 
would have to be controlled vertically, so that each of the middle 5 columns 
would have to be occupied. Thus we have proved that either the middle 5 
rows are all occupied, or the middle 5 columns are all occupied (or both). 
Let a be the number of solutions in which the middle 5 rows are occupied, 
b the number of solutions in which the middle 5 columns are occupied, and

a. b.
Fig. 36

c the number of solutions in which both of these conditions hold. Then 
y  = a +  b — c. By symmetry we see that a =  b, and by problem 34b, 
c = 5! =  120. Hence y  — 2a — 120, and we need only calculate a. 
When the middle 5 rows are occupied, the middle 3 columns must also be 
occupied in order to control the 4 squares at the top and the 4 squares at 
the bottom. Conversely, if these columns are occupied, the board is 
controlled. So the problem is: in how many ways can we place 5 rooks on 
the board of fig. 36b, with one rook on each of the 5 middle rows, so that 
each of the 3 middle columns contains at least one rook? This problem 
can be solved by using the principle of inclusion and exclusion. However, 
wc will use instead the following method of solution, because although it is 
somewhat more cumbersome in the present case, it generalizes more 
readily to larger chessboards (sec part d). We distinguish 4 different cases: 

Case I : All 5 rooks are in the heavily shaded rectangle B. One 
column of B contains 3 rooks, and the other 2 columns of B contain 1 
rook each.
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Case 2: All 5 rooks arc in B. Two columns of B contain 2 rooks 
each, and the other column of B contains 1 rook.

Case 3: One rook is in the lightly shaded area A, and the other 4 are
in B.

Case 4: Two rooks arc in A, and the other 3 are in B.
In case 1 there arc 3 ways to pick the column containing 3 rooks.

Once it is chosen there are 5 =  10 ways to place the 3 rooks on it.

Then there arc 2! =  2 ways to place the other 2 rooks on the other 2 
columns (since only 2 rows remain for them). Hence there are 3 • 10 • 2 =  
60 solutions in this case.

In case 2, there arc ( j =  3 ways to pick the 2 columns which contain
/5\2 rooks each. Once these are picked there are ~  10 ways to put 2

rooks on the first of the chosen columns. Then there are 3 ways to

put 2 rooks on the other chosen column (since only 3 of its rows are still 
usable). Finally, the position of the rook on the remaining column is 
completely determined. Hence we get 3 • 10 • 3 =  90 solutions in this 
case.

In case 3, there arc 18 ways to place a rook in the area A. Once it is 
placed it eliminates the row it is on from further use, thus leaving only 4 
rows available for the rooks in B. Of these rooks, 2 must be on the same 
column, and I on each of the other 2 columns. There are 3 ways of picking

the column with 2 rooks, and =  6 ways of putting the rooks on it.

Once these are placed there arc 2! =  2 ways of placing the last 2 rooks 
(since only 2 rows remain for them). Hence we get 18 • 3 ■ 6 • 2 =  648 
solutions in this case.

In case 4, we must first pick 2 rooks in area A, not on the same row. 
The total number of ways to pick 2 squares of A (paying no attention to

whether or not they arc in the same row) is =  153. From this we

must subtract the number of pairs of squares of A which are in the same 
row in order to have left the number of pairs which are not in the same row.

There is one way to pick 2 squares from the top row of A, =  6 ways to

pick 2 squares from the next row, =  15 from the next, =  6 from

the next, and one from the bottom row of A. Hence the number of ways of 
putting 2 rooks in A, not on the same row, is 153— 1 —6 — 15 — 6 — I 
=  124. Once these have been placed, there are only 3 rows left for the 3 
rooks which must be placed in B. Hence these rooks can be positioned in
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3! =  6 ways, by problem 34b. Thus we get 124 • 6 =  744 solutions in 
case 4. Combining the 4 cases we have

a =  60 +  90 +  648 +  744 =  1542
Therefore y  — 2 • 1542 — 120 =  2964, and xy =  71,136.

38d. The reasoning used in parts a, b, c can be generalized to an n x n 
chessboard. In the following discussion we let white be the color of the 
corners of the n X n board when n is odd, and define x and y  as before. 
Thus x is the number of ways to control the black squares, and y  the 
number of ways to control the white squares. There are 4 cases to 
consider.

Case 1: n =  4k. Here we need 2k black bishops and 2k white 
bishops. Reasoning as in part a, we find that x =  y  = (2k)\ (4k +  l)/2.

Case 2: n =  4k +  1. Here there are 2k black bishops and 2k +  1 
white bishops. Reasoning as in part c we find for k >  0 that

(2k)!, y = 2 { (2 /c - l) (2fc3+ 1 )(2 fc -2 )!

2k — l \  (2k +  1\ (2k — 1 j (2£ _  3),

+  (k +  1)(2k + 2)(2k -  l ) ^ ( 2 k  -  2)!

+  -(/c +  1)(3k3+  7k2+  5k)(2k -  1)!} -  (2k +  1)!

The 4 terms in the braces are obtained from the 4 cases analogous to those 
discussed in part c. The expression for y  can be simplified to

16 k3 -(- 24k2 +  Ilk  +  1,,,,^, 
y = ----------------------------- (2k)!

when k =  0, of course, y  =  1.
Case 3: n = 4k +  2. Here there are 2k +  1 black and 2k +  1 white 

bishops. Reasoning as in part b we obtain
x =  y  = (4k2 +  5k +  2)(2k)!

Case 4: n =  4k +  3. Here there are 2k +  2 black and 2k +  1 white 
bishops. By reasoning similar to that described above we find that

x =  (16k4 +  56 k3 +  67 k2 +  33k +  6)(2k)! 
y  =  (2k +  1)!

39a. Divide the chessboard into 16 parts, each two squares wide and two 
squares high, as shown in fig. 37a. In an arrangement of kings such that 
none of them lies on a square controlled by another, none of these 16 
parts can contain more than one king. It follows that it is impossible for
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a. b.

Fig. 37

more than 16 kings to be arranged on the board in such a way that none of 
them lies on a square controlled by another.

On the other hand, we can actually put 16 kings on the board in such a 
way that no one controls another; one way to do this is shown in fig. 
37a. Consequently, the maximum number of kings in such an arrangement 
is 16.

39b. If n is even: n =  2k, then the problem can be solved exactly as in 
part a. Specifically, the board can be divided into (nj2)2 =  k2 pieces 2 
squares wide and 2 squares high. From the fact that none of these 
pieces can contain more than one king, it follows that the required 
maximum number of kings is at most k2. But it is possible to arrange k2 
kings on a 2k x  2k board in such a way that none of them is controlled 
by another; it suffices, for example, to put a king in the lower left-hand 
corner of each of the k2 pieces into which we have divided the board. It 
follows from this that for n even, the required maximum number of kings 
is k2 = n214.

Now let n be odd: n = 2k +  1. We split the board into

n +  1
2 =  (fc +  I)2

parts as indicated in fig. 37b (in such a decomposition we obtain k2 
two-by-two pieces, 2k pieces each consisting of two squares, and one 
piece which consists of a single square; that is, a total of k2 +  2k +  1 =  
(k +  l)2 parts). It is clear that no more than one king can be put in any of 
these pieces. Consequently, the total number of kings cannot exceed 
(k +  l)2. But it is possible to arrange (k +  l)2 kings in such a fashion: 
put a king in the lower left-hand corner of each 2 x 2  piece, one in the
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left-hand square of each 1 X 2 piece, one in the lower square of each 
2 X 1 piece, and one in the remaining square; this procedure is illustrated 
in fig. 37b for the case k — 4. Hence the maximum number of kings in 
such an arrangement is

(k +  l)2 = (n +  l)2 
4

Using the notation for integral part which was introduced on p. 6, 
we can put together the results for the cases of even and odd n: the 
maximum number of kings which can be arranged on an n X n chess
board in such a way that none of them lies on a square controlled by 
another is [(« +  l)/2]2.

Remark. By considering fig. 37b, it is not hard to prove that for odd n 
there is exactly one arrangement of (n + l)2/4 kings on an n x n board for 
which none of the kings lies on a square controlled by another one. For even 
n (in particular, for n = 8) there are many different arrangements of [(« + l)/2]2 
kings such that none of the kings attacks another. We leave it to the reader to 
compute the number of such arrangements.

40a. Divide the board into nine parts as indicated in fig. 38a. In each of 
these parts there is a square (marked by a circle in fig. 38a) which can be 
controlled only by a king which is on a square of the same part. Conse
quently, in order that every square be controlled by a king, it is necessary 
that there be at least one king in each of the nine parts. It follows from 
this that the required number of kings is at least nine. But it is possible to 
arrange nine kings on the board in such a way that they control the entire 
board: such an arrangement is illustrated, for example, by the circles in 
fig. 38a. Thus the minimum number of kings is nine.

40b. The problem can be solved in the same way as part a, but here we 
have to consider three cases separately: the case of n divisible by 3, the 
case where n leaves a remainder of 2 upon division by 3, and the case 
where n leaves a remainder of 1 upon division by 3.

If n is divisible by 3, that is, n — 3k, then the board can be divided 
into k2 =  (/?/3)2 pieces each 3 squares wide and 3 squares high (see fig. 38b); 
there must be a king in each of these pieces, since otherwise the middle 
square of one of the pieces would not be controlled by any king. Now 
k2 — n2j9 kings can always be arranged on a board of n2 =  (3k)2 squares in 
such a way as to control all squares of the board (to do this, it suffices to 
put a king on the middle square of each of the k2 parts into which the 
board has been divided; see fig. 38b). Hence the minimum number of 
kings is k2 ~  n2/9.

If n leaves a remainder of 2 upon division by 3, that is, n = 3k +  2, 
then the board can be divided into (k +  l)2 =  [(« +  l)/3]2 parts in
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a. b.

c.
Fig. 38

exactly the same way as in the case n =  8 (see fig. 38a). From a considera
tion of this decomposition, it follows that for n = 3k +  2 the minimum 
number of kings is

(<c +  1)* =  & - ± i I .
9

Finally, if n leaves a remainder of 1 upon division by 3, that is, 
n = 3k + 1, then the board can be divided into

(k +  l)2 = n +  2\2
3

pieces in the way indicated in fig. 38c (where n =  10, k =  3). From a 
consideration of this figure it is seen that the minimum number of kings is

(* +  I)2 =
(n +  2)2

9
Using the symbol for integral part, the results obtained can be 

combined as follows: the minimum number of kings which can be
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arranged on an n x n chessboard in such a way as to control all squares 
of the board is [(w +  2)/3]2.

Remark. It is not hard to see from a consideration o f fig. 38b that for n 
divisible by 3 there is exactly one way in which (n/3) 2 kings can be arranged on 
a board o f n2 squares so as to control the entire board. For values o f n which  
leave a remainder o f 1 or 2 upon division by 3, [(« +  2)/3] 2 kings can be arranged 
on the board in such a way as to control all squares o f  the board in many 
different ways; we leave it to the reader to compute the number o f such arrange
ments.

41a. There cannot be more than one queen in any column of the chess
board; hence it is impossible to arrange more than eight queens on an 
8 x 8  chessboard in such a way that none of them lies on a square 
controlled by another.

Fig. 39

On the other hand, we can actually put 8 queens on the board so as to 
satisfy this condition; one such arrangement is shown in fig. 39.

It can be shown that on an ordinary chessboard there are 92 different 
arrangements o f eight queens which satisfy the condition imposed. (See, for 
example, M. Kraitchik, Mathematical Recreations, N ew York, 1942, p. 251.)

41b. There cannot be more than one queen in any column of the chess
board (since otherwise two queens would each control the square occupied 
by the other); hence it is impossible to arrange more than n queens on an 
n X n chessboard so as to satisfy the hypothesis of the problem.

If a single queen is put on a 2 X 2 chessboard, then it will control 
all squares of the board and thus no second queen can be put on the 
board (fig. 40a). On a 3 X 3 chessboard, one can arrange two queens so 
as to satisfy the hypothesis (fig. 40b), but it is impossible to do so with 
three queens. On a 4 x 4 or 5 x 5 chessboard it is possible to arrange 
four or five queens respectively, none of which lies on a square controlled 
by another (fig. 40c and d).
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F i g .  4 0

We will now show that for n ^  4 it is possible to arrange n queens on 
an n x n chessboard so that none lies on a square controlled by another. 
Consider first the case of even n — 2k. In adjacent columns one cannot 
put two queens either in the same row or in adjacent rows (otherwise 
these queens would control each other horizontally or diagonally). We 
will therefore try putting each queen in a row two away from that 
in which we put the preceding one. Let us start by putting a queen on 
the second (that is, next to bottom) square of the first column, then on 
the fourth square of the second column, on the sixth square of the 
third column, etc., until we hit the top row of the board; then start again 
on the bottom square of the next column, then the third square of the 
next column, etc. (fig. 41). Since no two queens are in the same row or 
column, it remains only to prove that no two queens are on the same 
diagonal.

Let us treat separately the cases of positive and negative diagonals. 
The first nj2 =  k queens are arranged in such a way that the positive 
diagonal on which any of them lies is the one immediately above that on

2 3 4 5 6 7 8 9  10 

F i g .  4 1
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which the previous one lies; similarly with the remaining k queens. 
Thus, the only way in which two of them could lie on the same positive 
diagonal would be for one of the first k queens to lie on the same positive 
diagonal as one of the second k queens. But this is impossible since the 
first k queens lie above the diagonal which joins the lower left-hand 
corner of the board to the upper right-hand corner, and the other k 
queens lie below this diagonal. Hence no two of the queens lie on the 
same positive diagonal.

If two squares of the board lie on the same negative diagonal, then 
the sum of the row number and the column number is the same for 
both of them. Conversely, if the sum of the row number and column 
number is the same for two squares, then they lie on the same negative 
diagonal. The row number of each of the squares on which the first 
k queens lie is twice the column number. The remaining k queens lie 
in the (k +  l)st through 2A>th columns; the column number of the 
square in which one of these queens lies is thus of the form k  +  s, where 
s is a positive integer at most equal to A:; it is not hard to see that the corre
sponding row number is 2s — 1. For r =  1,2,.  . . , k, the sum of the row 
and the column numbers of the square containing the r-th queen is 
2r +  r =  3r; consequently, for each of the first k queens this sum has a 
different value, which means that no two of them lie on the same negative 
diagonal. Similarly, the sum of the row and column numbers for the 
(k +  s)th queen (5 =  1,2, . . . , k) is (25 — 1) + {k +  5) =  35 +  k  — 1, 
which takes a different value for each value of 5; consequently, no two of 
the last k queens lie on the same negative diagonal. The only remaining 
possibility is that of one of the first k queens (say, the r-th) lies on the same 
negative diagonal as one of the last k queens (say, the (k  +  5)th). This 
will happen if and only if

3r =  35 +  k — 1, that is, 3(r — 5) +  1 =  k = \n, or 
6(r — 5) +  2 =  n.

This is possible only when n leaves a remainder of 2 upon division by 6. 
Thus, for even n of the form 6m or 6m +  4, fig. 41 gives an arrangement of 
n queens on the chessboard for which none of the queens lies on a square 
controlled by another.

For n — 6m +  2, fig. 41 leads to an arrangement in which two queens 
control each other. But even in this case we can find an arrangement of 
n queens, none of which lies on a square controlled by another, although 
this arrangement is more complicated than the preceding one. One such 
arrangement is shown in fig. 42 for the case of n — 14 (compare also with 
fig. 39). Here, in the n/2 — 3 columns starting with the 2nd and ending 
with the (n/2 — 2)nd, a queen is put in every other row starting with the 
3rd (that is, the queen in the 2nd column lies in the 3rd row, that in the 3rd
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column lies in the 5th row, that in the 4th column lies in the 7th row, etc.). 
In the n/2 — 3 columns starting with the (n/2 +  3)rd and ending with the 
(n — l)st, queens are put in every other row, starting with the 6th (that is, 
these queens are put respectively into the 6th, 8th, . . . , and (n — 2)nd 
rows). This leaves us with columns 1, n/2 — 1, n/2, n/2 +  1, n/2 +  2, and 
n and rows 1,2, 4, n — 3, n — 1, and n unoccupied. In the 1st, (n/2 — l)st, 
(n/2)nd, (n/2 +  1 )st, (n/2 +  2)nd, and nth columns, the queens are 
placed respectively in rows n — 3, 1, n — 1,2, n, and 4. It is clear that no 
two queens are in the same row or column; we thus have only to verify 
that no more than one queen lies on any diagonal.

Let us label the positive diagonals by assigning the numbers 1 to 
2n — 1 to the squares of the bottom row and the leftmost column as 
indicated in fig. 43a and giving each positive diagonal the number of the 
numbered square which belongs to it. We label the negative diagonals in a 
way similar to this by assigning numbers to the squares of the bottom row 
and the rightmost column as indicated in fig. 43b. If by the first queen we 
mean that lying in the first column, by the second queen that lying in the 
second column, etc. then the 1st, 2nd, 3rd, . . . , and n-th queen will lie 
respectively on the positive diagonals whose numbers are

2n — 4, n +  1, n -f 2, n +  3, . . . , 3n/2 — 3, n/2 +  2, 3n/2 — 1,

n/2 +  1, 3n/2 — 2, n/2 4- 3, n/2 +  4, n/2 -T 5, . . . , n — 1,4;

no two of these numbers will be equal provided that

4 <  n/2 +  I, 2n — 4 >  3n/2 — 1,
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Fig. 43a

that is, if n > 6. Similarly, the queens lie respectively on the negative 
diagonals whose numbers are

n - 3 , 4 ,  7, 10, 13, . . .  , 3n/2 -  8, njl -  1, 3nj2 -  2,
nj2 +  2, 3«/2 +  1, njl +  8, n/2 +  11, njl +  14,

nj2 +  17, . . . , 2n — 4, n +  3,
where the dots denote terms of an arithmetic progression with difference
3. The numbers 4, 7, 10, 13, . . .  , 3n/2 — 8, 3nj2 — 2, 3n/2 +  1 all give 
remainders of 1 on division by 3; n/2 — 1, n/2 +  2, n/2 +  8, n/2 +  11, 
n/2 +  17, . . . , 2n — 4 are all divisible by 3 (recall that we are dealing with 
an n of the form 6m -f 2); n — 3 and n +  3 give remainders of 2 on 
division by 3. It is immediately clear from this that none of the numbers 
occurs more than once.

It now remains only to show that on an n x n board, where the 
number n is odd and 2>5, it is possible to arrange n queens in such a way 
that none of them lies on a square which another controls. But this 
becomes clear if one notes that in all the above arrangements constructed 
for even n, there are no queens on the diagonal joining the lower left-hand 
corner to the upper right-hand corner. Consequently, we can arrange n 
queens on an n x n board (n odd) in the following way: on the leftmost 
n — 1 columns and bottom n — 1 rows, n — 1 queens are arranged in 
such a way that none of them controls another according to the above 
scheme (this is possible since n — 1 is even), and the remaining queen is 
placed in the upper right-hand corner of the board. These n queens will
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Fig. 43b

satisfy the required condition (see, for example, fig. 44 ,where an arrange
ment of 15 queens on a 15 X 15 board squares is illustrated).

To determine the number of different arrangements of n queens on an 
n x n board in which none of the queens lies on a square controlled by

Fig. 44
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another is extremely difficult, and so far no one has succeeded in doing so 
for the general case.

Another as yet unsolved problem is that of determining the minimum 
number of queens which can be arranged on an n x n chessboard so that

% % 1 o

% % % f a
% far o f a %

% % o

% o f a fa ,

% % f a
o % % fa. far

1
Fig. 45

they will control all squares of the board. For an ordinary 8 x 8  board, 
this number is 5 (see, for example, fig. 45); the number of different 
arrangements of 5 queens on an 8 x 8 board such that the queens control 
all squares of the board is 4860.

42a. Since a knight on a white square controls only black squares, it is 
obvious that 32 knights can be arranged in such a way that none lies on a

1 1
% % % %

'fa % % %
% % % %

fa, % %
% % fa. %

% % 'fa 1

Fig. 46

square controlled by another; to do this, it suffices to put a knight on each 
white square (of which there are 64/2 =  32). Let us show that such an 
arrangement using more than 32 knights is not possible. For this purpose, 
let us divide the board into eight rectangular sections, each two squares 
wide and four squares high (fig. 46). It is easy to see that a knight situated 
on a square of one of these rectangles R controls one and only one other 
square of R. Thus the squares of R can be divided into 4 pairs, and only
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one square of each pair can be occupied by a knight. It follows from this 
that no more than four knights can be arranged in one of these rectangles 
in such a way that none of them lies on a square controlled by another. 
Therefore, the total number of knights which can be arranged in such a 
way on the chessboard is at most 4 x 8 =  32.

42b. We must determine how many arrangements of 32 knights on a 
chessboard are such that none of them lies on a square controlled by 
another. Two such arrangements present themselves immediately: we 
can put the 32 knights on all the white squares of the board, or on all the 
black squares of the board. Let us prove that there are no other arrange
ments.

Divide the board once more into eight rectangular sections as 
indicated in fig. 46. On each section we must arrange exactly four knights 
(since we have 32 knights to dispose of and by the argument of part a, no 
more than four can be in any one section). Consider now how four 
knights can be arranged on the lower left-hand rectangle (we will call this 
the first rectangle).

Let us first try putting knights in each of the bottom two squares of 
this rectangle (these squares are marked by circles in fig. 47a). In this case 
we must leave empty the squares of the first rectangle which are marked by 
crosses: the two squares in the third row are controlled by the two 
knights, and the square in the second row marked with a cross must be 
left free since otherwise the three knights would control five squares of the 
second rectangle (that is, the one to the right of the first rectangle), and 
consequently it would be impossible to arrange four knights in that 
rectangle without one of them lying on a square controlled by another 
knight. Since the 2 squares marked with asterisks in fig. 47a cannot both 
be occupied, we must have a knight in the upper left-hand corner of the 
first rectangle. This leaves only two possible arrangements: those
indicated by the circles in fig. 47b and 47c. If we arrange the knights on 
the squares of the first rectangle marked by circles in fig. 47b, then the 
squares of the second rectangle marked with circles will have to be the ones 
with knights on them (since the other four squares of the second rectangle 
are controlled by the knights in the first rectangle); but then only two 
knights could be put in the third rectangle (namely, on the squares 
marked with circles), since the other six squares are controlled by the 
knights in the second rectangle. Consequently, this possibility must be 
discarded. Finally, if we arrange the knights as in fig. 47c, then the 
knights in the second rectangle can be placed only in the first and fourth 
rows; then in the upper left rectangle, the knights can be placed only in 
the top two rows (since the other four squares of this rectangle are 
controlled by the four knights in the fourth row). But then the knights on
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the board control all squares of the second rectangle of the upper row, 
thus making it impossible to put any knights in that rectangle. We 
therefore see that the bottom two squares of the first rectangle cannot 
simultaneously be occupied.

If there were no knights in the bottom two squares of the first 
rectangle, then there would have to be knights on both squares of the 
third row. But these two knights would control five squares of the second 
rectangle; consequently, this arrangement is also inadmissible.

c. d.
Fig. 47

Thus we are left with the case where there is exactly one knight in the 
bottom row of the first rectangle. There must likewise be exactly one 
knight in the top (fourth) row of this rectangle. For if there were no 
knights in the top row, there would have to be two knights in the second 
row, and these two knights would control five squares of the second 
rectangle. If there were two knights in the top row of the first rectangle, 
then either it would be impossible to arrange four knights in the second 
rectangle (fig. 47d) or it would be possible to arrange four knights in the 
second rectangle but not in the third (fig. 47e).

It is easy to see that the knight in the bottom row and the knight in the
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top row of the first rectangle must lie in different columns: otherwise 
there would again be no way to arrange four knights in each of the second 
and third rectangles (fig. 47f and g). But if these two knights lie in 
different columns (that is, if they lie on squares of the same color; see fig. 
47h), then the two remaining knights can only be put on the other two 
squares of the same color; they are the only squares not controlled by the 
first two knights. Further, the only squares of the second rectangle which

1 1 I I
$

,  J % 1 %
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& %
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Fig. 47

h.

are not controlled by the knights in the first rectangle are those of that 
same color; similar arguments for the third and fourth rectangles show 
that the knights in the lower half of the board must all lie on squares of the 
same color. Exactly the same argument is applicable to the upper half of 
the board, and thus all knights in the upper half of the board must lie on 
squares of the same color. Furthermore, if the knights in the bottom half 
of the board lay on squares of one color and those in the top half lay on 
squares of the other color, then some knights would lie on squares 
controlled by others. Therefore there remain only two possibilities: 
the knights are either all put on white squares or all on black squares.
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IV. GEOMETRIC PROBLEMS ON COMBINATORIAL 
ANALYSIS

43a. First draw the lines joining C to the n points on the side A B ; these 
lines divide ABC into n +  1 smaller triangles. Now draw a line s from 
B to one of the points on AC (fig. 48). This line consists of n +  1 segments 
slt . . . , sn+1, and each of these segments cuts one of the small triangles 
into two pieces. Therefore, drawing s has increased by n +  1 the number 
of parts into which ABC was previously divided. The same argument 
applies to any of the n lines from B to AC; as each is drawn it increases 
the total number of parts by n +  1. Thus at the end of the process ABC 
is divided into (n +  1) +  n(n +  1) =  (/? +  l)2 parts.1

A

43b. The lines emanating from the vertices B and C divide the triangle 
into (n +  l)2 parts (see part a). Each of the lines emanating from the 
vertex A intersects all the 2n lines which emanate from the vertices B and C 
(the points of intersection are all different since no three of the lines are 
concurrent). Thus, each of the lines emanating from the vertex A is 
divided into 2n +  1 pieces by the other lines and consequently increases 
the total number of pieces by In +  1. It follows from this that the total 
number of pieces is

(/? +  l)2 +  n{2n +  1) =  3 n2 +  3n +  1.

44a. It is clear that n lines will divide the plane into a maximum number of 
pieces if any two of these lines intersect (that is, if no two of them are 
parallel) and no three of them are concurrent. Consequently, we have

1 This result can also be derived from the fact that the n lines emanating from the 
vertex B divide each of the n +  1 parts of the triangle already obtained into n +  1 
smaller pieces. But the argument presented in the text is more general, and is applicable 
in many subsequent problems.
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only to determine into how many pieces n mutually non-parallel lines, no 
three of which are concurrent, divide the plane.2

Suppose that k  of the lines have already been drawn in the plane; 
let us draw the (k  +  l)st line and see by how much it increases the 
number of pieces into which the plane is divided. The (k +  l)st line 
meets each of the k  lines which have already been drawn; the k  points of 
intersection divide it into k  +  1 parts. Consequently, the (k  +  l)st line 
cuts exactly k  +  1 of the parts into which the plane has already been 
divided. Since it splits each of these parts into two pieces, drawing the 
(k +  l)st line increases the number of pieces by k  +  1. But if only one 
line is drawn, it will divide the plane into two pieces. It follows from this

that after n lines have been drawn the plane will have been divided into

2-f-2 +  3 +  4- f - - - '  +  n

parts (drawing the second line increases the number of parts by 2, drawing 
the third line increases it by 3 more, drawing the fourth increases it by 4 
more, etc.). Consequently, the greatest number of parts into which n 
straight lines can divide the plane is

2 +  2 +  3 +  , , ' - f -n =  (I +  2 +  3 +  - >- +  n) +  l

_ n(n +  1) j =  n2 +  n +  2
2 2

44b. n circles will divide the plane into a maximum number of pieces if 
every two of them intersect (that is, if no two of them are tangent and none 
of them lies entirely within or outside of another) and no three of them are 
concurrent.3

2 One might think that when these conditions are satisfied the number of pieces
could still depend on the arrangement of the lines. However, it will follow from our
proof that this number is unambiguously determined by the value of n and is conse
quently independent of the arrangement of the lines.

3 Such sets of circles always exist; in fact it is possible to draw infinitely many 
circles in the plane in such a way that any two of them intersect in two points, but no 
three of them are concurrent. For example, construct two intersecting circles of the 
same radius r with centers A and B (see fig. 49). Then draw all circles of radius r whose 
centers are on the line segment AB. This family clearly has the desired properties.
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By reasoning as in part a, we can show that the (<k +  l)st circle 
increases by 2k the number of parts into which the plane is divided. For 
the {k +  l)st circle intersects each of the first k  circles in two points; 
these 2k points divide the (k +  l)st circle into 2k arcs. Each of these 
arcs divides in two one of the regions formed by the first k  circles. Since 
one circle divides the plane into two parts, the total number of parts 
after drawing the n-th circle is

2 +  2 +  4 +  6 +  8 +  -- - +  2 {n — 1)

=  2 +  2(1 +  2 +  3 +  ■•■ +  ( » -  1))

=  2 +  2 nt'- ~  ^  =  n2 -  n +  2.
2

45a. n planes will divide 3-dimensional space into a maximum number of 
parts if any three of them have exactly one point in common, and no four 
of them have a point in common.

Suppose that k planes have already been drawn; let us see by how 
much drawing the {k +  l)st plane increases the number of pieces into 
which space is divided. This plane meets each of the first k  planes in a 
line; furthermore, any two of these lines of intersection have exactly one 
point in common (since any three of the planes have exactly one point in 
common), and no three of these lines are concurrent (since if three of them 
passed through the same point, at least four of the planes would pass 
through that point, which is excluded by the hypothesis). Consequently, 
these k  lines divide the (k +  l)st plane into (k2 +  k +  2)/2 parts (the 
result of problem 44a), each of which is the surface on which the (k +  l)st 
plane meets one of the pieces formed by the first k  planes. Thus the 
(k +  l)st plane cuts (k2 +  k +  2)/2 pieces, splitting each in two; 
consequently, drawing the (k  +  l)st plane increases the number of pieces 
by (k2 +  k +  2)/2. Since a single plane divides space into two parts, it 
follows from this that the n planes will split space into

„ , l 2 + 1 + 2 ,  22 +  2 +  2 , 32 +  3 +  2 ,I  _|----------   1------   1--------   h ‘ ' •
2 2 2

, (n ~  l)2 +  (n -  1) +  2
2 71 — 1

| ( l2 +  22 +  ••• +  („ -  l)2) +  (1 +  2 +  • • • +  (n -  1)) +  2 +  • • • +  2
2

l + 2  +  3 +  --  * + ( n  — 1) =  ^
2

parts. Since
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and4

l2 +  22 +  32 +  • • • +  (n — l)2 =  ”(« ~  l )(2n ~  ! ) ;
6

the total number of parts is

2 +  "(" ~  IX2" ~  *> +  ~  *> +  ( „ -  1)

— 2 -y (n ~  ^X2”2 — n +  3n +  12)
~ ~  12

_  n3 +  5n +  6 
~  6

45b. The solution is similar to the preceding one. For brevity we will not 
state the hypotheses we must impose in order to insure a maximum 
number of pieces but will tacitly assume them throughout. Suppose that k 
spheres have been drawn; let us see by how much the (k +  l)st sphere 
increases the number of pieces. The (k +  l)st sphere meets each of the 
first k spheres in a circle; the circles of intersection will all be different, no 
two of them will be tangent, and—viewed as curves on the (k +  l)st 
sphere—none of them will lie inside or outside another. In problem 44b it 
was proved that under these conditions k  circles in a plane will divide the 
plane into k2 — k +  2 pieces; however, exactly the same argument can be 
used to prove the corresponding theorem for circles on a sphere. There
fore the surface of the (k +  l)st sphere is divided into k2 — k +  2 regions 
by the circles at which it intersects the first k spheres. Each of these 
regions splits in two one of the pieces into which the first k spheres had

4 To prove this, note that:

23 =  (1 +  l )3 =  l 3 +  3-12 +  31 +  1,
33 =  (2 +  l )3 =  23 +  3-22 +  3-2 +  1,
43 =  (3 +  l )3 =  33 +  3-32 +  3-3 +  1,

n3 =  ((/? -  1) +  l )3 =  (« -  l ) 3 +  3(n -  l )2 +  3(n -  1) +  1

Adding all these equations, we obtain

23 +  33 H------+  n3 =  l 3 +  23 H---------- 1- (n — l ) 3

+  3(12 +  22 + • • •  +  (« -  l)2) +  3[1 +  2 +  • • • +  (n -  1)] +  (#7 -  1)

and consequently.

l2 + 22 + ■••+(#!- I)2 = H3 — l 3 — 3[1 +  2 +  • • • + ( «  — 1)] -  (« -  1)

2 n3 — 3 n(n — 1) — 2 n n(2n2 — In +  3 — 2)

n{n — 1)(2h — 1)
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divided space. The (k +  l)st sphere thus increases the number of pieces 
by k2 — k +  2, and consequently the total number of pieces is

2 +  ( l2 -  1 +  2) +  (22 -  2 +  2) +  (32 -  3 +  2)

+  • • • +  [(n -  l)2 -  (n -  1) +  2]

=  2 +  ( l2 +  22 +  32 +  • • • +  (u -  l)2)
n—1

-  (1 +  2 +  3 +  • • • • +  (n -  1)) +  (2 +  2 +  2 +  ■ • • +  2)

=  2 +  -  0(2" -  1) _  +  2(„ _  D
6 2

_  2 (» — l)(2n2 — n — 3n +  12) _  n(n2 — 3n +  8)
~  6 _  3

For example, five spheres can divide space into a maximum of 
5(25 — 15 +  8)/3 =  30 pieces.

46. First solution. Call one vertex Alt the next one (going clockwise 
around the n-gon) Az, etc. Consider a diagonal A^^. of the «-gon 
AXAZAZ • • • An. There are k — 2 vertices (namely, Az, A3, A4, . . . , A ^ )  on 
one side of this diagonal and n — k  vertices (namely, Ak+1, Ak+Z, . . . , An) 
on the other side. The diagonal^ !/lfc will intersect precisely those diagonals 
which join one of the k — 2 vertices of the first group to one of the n — k 
vertices of the second group, that is, a total of (k — 2)(n — k) diagonals. 
Consequently, the diagonals emanating from the vertex Ax (that is, the 
diagonals A^A3, AXA4, . . . , AxAn_x) will intersect the other diagonals at a 
total of

1 • (n — 3) +  2{n — 4) +  3(n — 5) +  • • • +  (n — 3) • 1 

points. But

1 • (n — 3) +  2(n — 4) +  3(n — 5) +  • • ■ +  (n — 3) ■ 1

=  l[(n -  1) -  2] +  2[(n -  1) -  3] +  3[(n -  1) -  4] +  • • • 

+  0  -  3)[(n -  1) -  (n — 2)1 

=  (n -  1)[1 +  2 +  3 +  • • • +  (u -  3)]

— [ l - 2  +  2- 3 +  3 , 4 +  ,- , +  (« — 3 )(n — 2)]

=  (#i — ! ) (” ~  2X» ~  3) _  [1-2 +  2-3 +  3-4 +  ---
2

+  (n -  3)(n -  2)].
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And since5

l - 2  +  2- 3 +  3- 4 +  -- - +  ( n -  3)(n -  2) =  ^ ---- 3)(n_  2)(n---- 1_) ^

we have
1 • (n -  3) +  2(n -  4) +  3(» -  5) +  • • • +  (n -  3) • 1

_  (n — l)(n — 2)(n — 3) _  (n — l)(n — 2)(n — 3)
_  2 3

=  (n ~  1)(» ~  2)(n -  3)
6 ^

Thus the diagonals emanating from the vertex Ax will intersect the other 
diagonals in a total of (n — l)(n — 2)(n — 3)/6 points. The diagonals 
emanating from any other vertex will intersect the remaining diagonals in 
the same number of points. But in multiplying (n — 1)(« — 2)(n — 3)/6 
by the number of vertices of the n-gon (which equals n) we count each point 
of intersection four times (each of these points is the intersection of exactly 
two diagonals, each of which has two vertices as end-points). Thus the 
number of points of intersection is

(n — 1)(n — 2)(n — 3) x n =  n(n — l)(n — 2)(n — 3)
6 4 24

Second solution. This problem can be solved much more simply by 

using the formula Cnk =  (see the introduction to section I). In fact, 

consider any four vertices. Arrange them in clockwise order around the

6 By mathematical induction it is easy to prove that
l - 2 - 3 - - - / c  +  2 -  3-  4 -  , -(/e +  l )  +  3-  4 -  5 -  --(A: +  2) +  -- -

+  n{n +  l)(n +  2 ) • • ■ (n +  k -  1) =
n(n +  l)(/t +  2 ) •■•(« +  k) 

k +  1
This result also follows from the problem 57g.

We can also use the fact that
l - 2  +  2- 3 +  3- 4 +  -- - +  « ( « + l )

=  1 • (1 +  1) +  2 • (2 +  1) +  3 • (3 +  1) +  • • • +  n(u +  1)
=  (1* +  2* +  3* +  ■ ■ • +  n1) +  (1 +  2 +  3 +  ■ ■ • +  n);

and apply the footnote on p. 105.
Similarly,
l - 2 - 3 + 2 - 3 - 4  +  3-  4-  5 +  -- - + « ( «  +  1)(« +  2)

=  1 0  +  1)(2  +  2 ) +  2 (2  +  1)(2  +  2 ) +  ••• +  «(« +  l)(u +  2 )
=  ( l3 +  23 +  • • • +  n3) +  3(1* +  22 +  • • • +  «2) +  2(1 +  2 +  ■ • • +  «);

now apply the footnote on p. 105 and the remark on p. 113.
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n-gon. The diagonal joining the first and third points will intersect the 
diagonal joining the second and fourth points, and no other pair of 
diagonals joining these four points will intersect within the n-gon (see fig. 
50). By associating to each set of four vertices the point at which two of 
its diagonals meet, we set up a one-to-one correspondence between the 
points of intersection and the sets of four vertices. It follows from this 
that the number of points of intersection equals the number of ways one can 
choose four vertices from among the n vertices of the /j-gon, that is, the 
number of combinations of n elements 4 at a time, which equals

/«\ _  n(n — 1)(/j — 2){n — 3)
W  ”  1 - 2 - 3 - 4

Fig. 50

47. First solution. Denote by f n the number of parts into which a convex 
«-gon, no three of whose diagonals are concurrent, is divided by its 
diagonals. We will derive a relation connecting^ with/n+1. Consider any 
convex (n +  l)-gon; denote one of its vertices by Ax, the next vertex in 
the clockwise direction by A2, the next one by A3, etc. (fig. 51). The 
polygon AXA2 ■ • ■ An is then a convex /r-gon. Draw all of its diagonals; 
they will also be diagonals of the given (n +  l)-gon, AXA2 • • • AnAn+1. 
To obtain the rest of the diagonals of the given (n +  l)-gon, we must join 
the vertex An+1 to each of the n — 2 nonadjacent vertices. Consider the 
diagonal joining A„+1 to Ak (k =  2, 3, 4, . . . , n — 1); k — 1 vertices lie 
on one side of it (the vertices Alf A2, . . . , Ak_1), and n — k vertices lie 
on the other side (the vertices Ak+X, Ak+2, . . . , An).

Consequently, the diagonal An+lAk meets (k — l)(/i — k) of the 
diagonals of the (n +  l)-gon. The points of intersection divide this 
diagonal into (k — 1)(« — k) +  1 parts. Hence this diagonal increases by 
(k — 1)(« — k) +  1 the number of parts into which the /j-gon is divided. 
The diagonals which do not pass through An+1 divide the (n +  l)-gon 
into f n +  1 parts. ( fn parts make up the n-gon AkA2 • • • An and the
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Fig. 51

(Jn +  l)st part is the triangle A ^A j^A J. After drawing the diagonals 
through An+1 the number of pieces is increased by

[(2 -  1)(« -  2) +  1] +  [(3 -  1)(« -  3) +  1] +  • • •
+  [((« -  0  -  1)(« -  (n -  1)) +  1].

We thus have

fn +1 — fn  +  (2

But

l ) ( « - 2 )  +  ( 3 -  1)(« — 3) +  ■ • ■
+  [(« 1) — 1][« — (« — 1)] +  n ~  1.

(2 -  1)(« -  2) +  (3 -  l)(n -  3) +  • • ■ +  [(n -  1) -  l][/i -  (n -  1)]

=  1 • (n -  2) +  2(rc -  3) +  • ■ • +  (n -  2) ■ 1 = (” ~  2)(” ~  1}”

by formula (1) on page 107, with n replaced by n +  1. 
Consequently,

(n — 2)(n — l)n
fn+l ~  fn  + +  n — 1

and similarly
(n -  3)(« -  2)(n -  1) „

f n = fn-1 H--------------- ;----------------V  n — 2,

h = h
1 - 2 - 3

+ 2 ,

/ » =  1-
Adding these equations, we obtain

,  1 - 2 - 3  , 2 - 3 - 4 , .  . , ( n -  2)(« -  1 )n
J n + l  —  ,  +  T T

+  (1 +  2 +  3 +  • • ■+( »  -  1)).



110 S O L U T IO N S

Since6

l - 2 - 3  +  2- 3- 4 +  3- 4- 5 +  -- - +  (n — 2)(n -  1 )n
( n — 2)(n — l)n(n +  1)

we end up with

J
Consequently,

y. (n — 2)(n — 1 )n(n +  1) , n(n — 1)
J n + 1 ~  ^  +  2  '

(,n — 3)(n — 2)(n — l)n (n — l)(n — 2) 
Jn 24 ' 2

_  (n -  l)(n -  2)(n2 - 3 n + 12)
~~ 24

Setting n =  3, 4, 5, . . . , in this formula, we obtain:

/ s =  1, / 4 =  4, / 8 = 1 1 , /« =  25, / 7 =  50, / 8 =  82, . . .

From this result it follows in particular that if no three diagonals of a 
convex polygon are concurrent, then the number of pieces into which the 
polygon is divided by its diagonals depends only on the number of vertices 
and not on the shape of the polygon.

Second solution. The diagonals of an «-gon divide it into smaller 
polygons. We denote by ra the number of triangles among these polygons, 
by r4 the number of quadrilaterals, by r5 the number of pentagons, etc., 
and finally by rm the number of m-gons, where m is the greatest number 
of sides of any of the polygons formed by the diagonals of the w-gon. We 
have to evaluate the sum

fn  — r 3 +  r4 +  r5 +  +  rm-

Let us determine the sum of the numbers of vertices of each of the 
polygons into which the «-gon is divided by its diagonals. On the one 
hand, this sum is equal to

3ra +  4r4 +  5r5 +  • • • +  mrm.

On the other hand, each of the points of intersection of the diagonals of 
the tt-gon is a vertex of each of the four polygons which meet there, and 
each of the vertices of the «-gon is a vertex of the n — 2 polygons which 
meet at that point (fig. 52). But since the number of points of intersection 
of the diagonals of the «-gon is [n{n — l)(n — 2)(n — 3)]/24 (see problem 
44) and the number of vertices of the n-gon is n, the sum of the numbers

9 See footnote on p. 107.
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Fig. 52

of vertices of all the polygons into which the n-gon is divided by its 
diagonals is

4 ~  1)(-2 ~  2)(" ~ -3) +  (« -  2)/i
24

=  Hi-” -  2)(^ ~  3) +  n(n -  2).

Therefore we have

3 r3 +  4r4 +  5r5 +  • • • +  mrm n(n — l)(n — 2 )(n — 3) 
6

+  »(» — 2).

Now let us determine the sum of the angles of all the polygons into 
which the n-gon is divided. Since the sum of the angles of a Ar-gon is 
(k — 2)180°, the required sum equals

[r3 +  2ri +  3r5 +  • • • +  (m — 2)rm]180°.
On the other hand, the sum of the angles which meet at any of the 
[n(n — 1)(« — 2)(« — 3)]/24 points of intersection of the diagonals of the 
n-gon is 360°, and the sum of all the angles whose vertices are vertices of 
the n-gon equals the sum of the angles of the «-gon, that is, it equals 
(n — 2)180°. It follows from this that

[r3 +  2 r4 +  3r5 +  • • • +  (in 2)rm]180°
_  n(n — l)(n — 2)(n — 3) 
~  24

360° +  (n -  2)180°,

that is,

r3 +  2r4 +  3r5 +  • ■ • +  (m — 2)rm =  ~  ~ ~^ n ~ ' )(n ~ 3) +  (h -  2).

Subtracting the expression for r 3 +  2r4 +  3 r 5 +  • • • +  (m — 2)r„, from 
the expression for 3r3 +  4r4 +  5 r b -f- • • • +  rn rm, we obtain:

2 (r3 +  r4 +  rb +  • • • +  rm)
n(n — l)(n — 2 )(n — 3)

+  (n — l)(n — 2),
12
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whence

/71 =  r3 + r4 +  r5 + , ‘ , +  rm
=  »(» -  1)(n -  2)pi -  3) (n -  1 )(n -  2)

24 2

_  (n — l)(n — 2)(n2 — 3n +  12) .
~~ 24

48a. Let us first ascertain how many rectangles k squares wide and / 
squares high can be formed on a chessboard. Every such rectangle is 
obtained by selecting k consecutive columns and / consecutive rows 
(fig. 53). The group of k  consecutive columns can be chosen in 9 — k

k

Fig. 53

different ways (the last column of the group can be the &>th, (k +  l)st, 
. . . , or 8th column of the board); similarly, the group of / rows can be 
chosen in 9 — / ways. It follows from this that a rectangle k squares wide 
and / squares high can be chosen in (9 — k){9 — /) different ways, and 
that there are a total of (9 — k )(9 — /) such rectangles on the board.

Let us determine how many rectangles of given width k there are on 
the board. The height / of the rectangle ranges from 1 to 8; hence the 
number of such rectangles is

(9 -  k){9 -  1) +  (9 -  k)(9 -  2) +  • • • +  (9 -  k)(9 -  8)

=  (9 -  /<)(8 +  7 +  6 +  5 +  4 +  3 +  2 +  l) =  36(9 -  k).

Now taking into account that the width k of the rectangle also ranges 
from 1 to 8, we find that the total number of different rectangles is

36(9 -  1) +  36(9 -  2) -|------ +  36(9 -  8)

=  36(8 +  7 +  6 +  5 +  4 +  3 +  2 +  l ) -  36-36 =  1296.
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48b. As in the solution of part a, we conclude that the total number 
of rectangles k squares wide and / squares high on an n x n board is 
[n +  1 — k){n +  1 — /). The total number of rectangles of width k  is 
therefore

(n +  1 — k){ 1 +  2 +  • • • +  n) = (n +  1 — k) ^  ^  .

Hence the number of all rectangles on the board is

0 +  2 +  • • • + n)
n(n +  1) 

2
n(n +  l)”]2 

_ 2  _

49a. This problem is closely related to the preceding one. The number 
of different k x k sections of the board is (9 — k)2 (see solution to problem 
48a). It follows from this that the total number of square sections is

82 +  72 +  62 + ------h i 2
=  64 +  49 +  36 +  25 +  16 +  9 +  4 +  1 =  204.

49b. By an argument similar to that of part a, we conclude that the 
required number is

l 2 +  22 +  32 +  • • • 2 =  n(n +  1)(2 n +  0  
6

(see, for example, the formula given in the footnote on p. 105; the above 
formula can be obtained from that one by substituting n +  1 for n).

Remark. Since by a well-known formula (which can be derived without 
difficulty by mathematical induction or by the method outlined in the footnote 
on p. 105), we have

l3 + 23 + 33 + • • • + n3 n(n + 1)\2

the results of parts a and b can be given in the following symmetric form:
The number of different square sections on an n x n board is

12 + 22 + 32 + • • • + «2; 
the number of different rectangular sections is

13 + 23 + 33 + • • • + n3.
50. It is obvious that the vertices of the triangles in question must be 
either vertices of the n-gon or intersection points of its diagonals. Let us 
consider separately the following four cases:

1. All three vertices of the triangle are vertices of the n-gon.
2. Two vertices of the triangle are vertices of the /7-gon and the third 

vertex is a point where two diagonals intersect.
3. One vertex of the triangle is a vertex of the n-gon and the other 

two are intersection points of diagonals.
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4. All three vertices of the triangle are intersection points of diagonals. 
Case 1. The number of triangles all of whose vertices are vertices

of the n-gon (fig. 54a) is Cn3 —

Case 2. Consider any triangle A4A2B, where A1 and A2 are vertices 
of the n-gon and B is a point where two diagonals intersect (fig. 54b). 
The sides AXB and A2B of this triangle are parts of diagonals A4A3 and 
A2A4 of the n-gon; our triangle is one of the four triangles into which 
the quadrilateral A4A2A3A4 is divided by its diagonals. Thus each

Fig. 54

(unordered) quadruple Ax, A2, A3, A4 of vertices of the original n-gon 
accounts for four triangles of type 2.

Consequently, the total number of triangles of type 2 is 4

Case 3. Consider any triangle A1B1B2, where Ax is a vertex of the 
n-gon and B4 and B2 are points of intersection of the diagonals (fig. 54c). 
The sides A1B1, A3B2, and BXB2 of this triangle are contained in diagonals 
A4A4, AxA3, and A2Ar> of the n-gon; our triangle A4B4B2 is one of the five 
triangles formed by the diagonals of the pentagon A4AZA3A4A3 (that is,
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it is one of the five triangular “points” of the star A1B2A2B3A3BiA4B.A5B1). 
Thus each quintuple of vertices Ax, A2, A3, A4, A3 accounts for five 
triangles of type 3. Consequently, the total number of triangles of type 3

Case 4. Consider any triangle BXB2B3> where Bu B2, and B3 are 
intersection points of diagonals of the «-gon (fig. 54d). The sides BXB2, 
B2B3, and B3BX of this triangle are contained in diagonals AXA4, A2A5, 
and A3Aq of the «-gon. Each sextuple of vertices Au A2, A3, A4, A5, A6 
of our /j-gon accounts for the single triangle of type 4 formed by the 
diagonals joining opposite vertices of the hexagon AXA2A3A4ASA6.

Consequently, the total number of triangles of type 4 is

Combining the four cases, we find that the total number Tn of 
triangles formed by the edges and diagonals of the convex «-gon is

=  n(/i -  1 )(m -  2) "j +  _  3) _|_ (n — 3)(n -  4)
6 L 4

(„ -  3)(n -  4)(n -  5)'
120

_  n(n — 1 )(n — 2)(n3 +  18n2 +  43n +  60)
~  720

Setting n =  3, 4, 5, etc., in this formula, we get

T3 =  1, r 4 =  8, =  35, T6 =  111, etc.
51. In order that there be any such Ar-gons, it is necessary that n be at 
least 2k (since any two vertices of the A>gon must have at least one other 
vertex of the n-gon between them).

Denote the vertices of the n-gon by the letters Ax, A2, . . . , An_x, An 
(the subscripts increase from 1 to n as one goes counterclockwise around 
the rt-gon); let us compute how many A>gons there are which satisfy the 
hypothesis of the problem and have An_x as a vertex. Let the remaining 
k — 1 vertices of any such Ar-gon be (in order of increasing subscripts) 
At , Ait, . . . , . The numbers /x, i2, . . . , ik_x lie between 1 and n — 3
(inclusive) and satisfy the condition

i 2 fi = 2, /3 /2 2,. . . , ik_ x ik_2 2.
Now consider the k — 1 numbers 

j i  =  ' u  y*2 = h  1 > j s  =  '3 2, . . . , j k_ i  = /*_i ( k  2).
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From the inequalities which the numbers i\, ;2, . . . , ik_i must satisfy, it 
follows that j i , j 2, . . . , j k-i satisfy the inequalities

1 ^  j\  < j 2 < j 3 <  • • • < j k-i  ^  (n -  3) -  (k -  2) =  n -  k -  1.
Conversely, ifj \ , j 2, ■ . ■ ,jk-i are distinct integers between 1 and n — k — 1 
arranged in increasing order, then the numbers /x =  j Y, i2 — y2 +  1,. . . , 
ik_x =  j k_x +  (/c — 2) will satisfy the inequalities

h = 1) h T 2̂  2, . . . , ik_i ik—2 2? 2, ik_l ^  n 3
and consequently, the /c-gon ■ • • Aik ^An_i will be of the type under
consideration. It follows from this that the number of such &-gons which 
have the point An_x as a vertex is equal to the number of ways one can 
choose k — 1 distinct positive integers which do not exceed n — k — 1,

that is, it equals

It is now easy to compute how many /c-gons satisfy the conditions 
of the problem. Since the number of A>gons having a given vertex of the

w-gon among their vertices is the same for any vertex, by multiplying

 ̂ by n (that is, by adding up the number of /c-gons having

A1 as a vertex, the number having A2 as a vertex, . . . and the number 
having An), we count each fc-gon which satisfies the hypotheses of the 
problem k times (since each /c-gon has k vertices). Consequently, the 
total number of such k-gons is

n/n — k — 1 \ _  n(n — k — 1)! 
k \  k -  1 / k\ (n -  2k)}.

52a. Let the n-gon be split into k triangles by diagonals which do not 
intersect inside it. Then the sum of the interior angles of all these triangles 
is k ■ 180°. Let us now evaluate this sum in a different way. Since our 
diagonals do not intersect within the n-gon, the vertices of the triangles 
must all be vertices of the «-gon (fig. 55). The sum of the angles of the 
triangles is therefore equal to the sum of the angles of the «-gon, which 
is (// — 2) • 180°. It follows from this that k • 180° =  (n — 2) • 180°, or

k — n — 2.

In — k — 1 
\ k -  1
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Hence the number of triangles into which an /7-gon is divided by the 
diagonals is always n — 2, and docs not depend on the way the /7-gon is 
divided.

52b. Let us now compute /, the number of diagonals involved in such a 
decomposition. Each triangle has three sides; consequently, the total 
number of sides of all the triangles in such a decomposition is 3 • (n — 2). 
But each diagonal involved is a side of two of the triangles, and each 
side of the /7-gon is a side of one of the triangles. Consequently,

3 (n — 2) =  21 +  n.
Hence

3/i — 6 — n = 21, I = —---- - — /7 — 3.
2

Therefore, the number of diagonals is n — 3 and is independent of the 
way the /7-gon is divided.

53a. Denote by Tn the number of ways in which the given /7-gon P can be 
divided into triangles by diagonals which do not intersect inside P. It is 
convenient to make the convention that T2 = 1. We will first derive an 
expression for T„ in terms of T2, T3, T4, . . . , Tn_x.

Select any side of P, say AXA2. When P is decomposed into triangles, 
this side must occur in one of them, and the remaining vertex of that 
triangle is some Ak, where 3 S  k ^  n. For a fixed value of k let us com
pute how many such decompositions there arc. The diagonal A2Ak cuts off 
the (k — l)gon A2A3 • • ■ Ak from P. This can be divided into triangles 
in Tk_x ways. Similarly the diagonal AxAk cuts off the (n — k +  2)gon 
AkAk_iX ■ • • AnAx, and this can be divided into triangles in T„_k+2 ways. 
Therefore the number of decompositions ofP in which the triangle AxA2Ak 
occurs is Tk_xTn_k+2. Assigning to k all values from 3 to n and adding, we 
obtain the relation

Tn — T2Tn- X +  T3Th- 2 +  TaTh-3 +  ’ ' ' +  Tn_tT3 +  Tn_xT2. (1)

Thus we have

T3 = T 2-T 2 = 1
Tx = T2 ■ T3 + T3 ■ T2 = 2
T3 = T 2 - T a + T 3 - T3 + T 4 - T 2 =  5

Te =  t2 ■ r ,  +  r 3 ■ r 4 +  r 4 • r 3 +  r 5 • r 2 =  14

t , =  t2 ■ t , +  t 3 ■ T, +  t 4 ■ ta +  Tr> ■ t 3 +  r 6 • r 2 -  4 2

T*= t 2 - t , +  t 3 - t 6 +  t 4 - t 5 + t 3 • r 4 +  t 6 ■ r 3 +  t 7 ■ t 2 =  1 3 2 .

Therefore a convex octagon can be divided into triangles in 132
different ways by diagonals which do not intersect inside the octagon.



118 S O L U T IO N S

53b. Let us begin by rewriting formula (1) of part a with n replaced by 
n +  1:

Tn4.i — T2Tn +  TaTn_x -|- T,Tn_2 +  • • • +  Tn_TTa +  TnT2
or

Tn+1 — 2Tn = TaTn_x +  T J n_2 +  • ' ' +  Tn_kTa. (2)

In order to get an explicit expression for Tn, we will derive another 
recursion formula for Tn in terms of Ta, . . . , Tn_k which will then be 
combined with (2).

Let us compute the number of decompositions of P in which the 
diagonal AkAk is involved. This diagonal divides P into the A:-gon 
AiA2 • ■ • Ak and the (n — k +  2)gon AkAk+1 • • • AnA1 (fig. 56). Since the 
first of these two polygons can be divided into triangles in Tk ways and

Ak

the second in Tn_k+2 ways, the number of decompositions of P in which 
the diagonal AkAk is involved equals TkTn_k+z.

Let us add up the numbers of decompositions involving each of the 
diagonals of P. The sum corresponding to the n — 2 diagonals emanating 
from Ay is

TsTn-1 +  T J n_z +  • • • +  Tn_zTn +  T ^ T ^ .  (3)

The sum corresponding to any of the other vertices will have the same 
value. Each diagonal figures in two of these sums (namely, the sums 
corresponding to its two endpoints). Consequently, n times the sum (3) 
is twice the sum of the numbers obtained by counting the number of 
decompositions in which each diagonal occurs.

According to the result of problem 52b, the number of diagonals 
involved in a decomposition of a convex «-gon into triangles is n — 3. 
Thus, in the expression

-  (T3Tn_k +  T4T„_2 +  • • • +  T„_2T4 +  T^Ta)
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each decomposition is counted n — 3 times: once for each of the n — 3 
diagonals involved in it. Consequently,

~(T sT7,_i +  TtTn_ 2 +  • • • +  Tn_2T4 +  r„_1T3) =  (n — 3 )Tn. (4)

This is the new recursion formula which we wanted to obtain.
By equation (2), we can replace the parenthesis on the left of (4) by 

T ’n + i  -  2Tn- This gives

whence

“ (Tn+1 — 2Tn) =  (n — 3)7"n,

Tn+i 2 Tn 2(n -  3)
* nn

T  - I T  X 2(n -  3) r  -  4n ~  6 T -  2(2” -  3)i  ̂* ft I * n * ti T* n  •

Thus we see that
n n

T ,=  1
_  2 • 3 _  22 • 314 —  1 3  —

t6 =
2 • 5 T,, =

2 ■ 3

23 • 3 • 5 
2 - 3 - 4

and in general

2 -7  24 • 3 • 5 • 7
5 5 ~  2 - 3 - 4 - 5  ’

!~2 ■ 3 • 5 • 7 - - - (2n -  5)
0  -  1)!

Using binomial coefficients, this expression can be rewritten in the 
following form:

T = 1 • 2 • 3 • 4 - - • (2n -  6)(2n -  5) 2„_2 =  (2n -  5)1 2"~2
" (n -  1)! 2 • 4 • • • (2n -  6) (n -  1)! 2n"3(n -  3)1

_  2 (2n -  5)!________ 2_ /2n -  5\
m — 1 (n — 2)! (n — 3)! n — 1 \ n — 3 /  

or in another form,

(2n -  5)! 2 ________ (2n -  4)! =  (2n -  4)!
(« -  1)! (n -  3)! “  (n -  2)(n -  1)! (n -  3)! “  (n -  1)! (n -  2)1

1 (2n -  4 ) ! ___ 1_  / 2/i -  4\
n -  1 [(n -  2) !]2 “  n -  l l  n -  2 /
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or,

T =  (2n -  4)! 1 (2n -  3)! =  1 (2n -  3\
" (n — 1)! (n — 2)! 2n — 3 (n — 1)! (n — 2)! 2n - 3 \ n  - 2 / '

For large values of n, the computation of Tn by any of the above 
formulas is quite lengthy. However, by using Stirling’s formula7

one can obtain without difficulty an approximate formula for Tn:

T _  (2n -  4)! \!2ir2(n -  2)[2(w -  2)]2("-2)e- 2("-2)
{n -  1)[(« -  2)!]2 („ _  1)[V2tt(ii -  2)(n -  2) " -V (n- 2)]2

22(n—2)

(n — l)\/7r(n — 2)

This formula allows us to estimate Tn with the aid of a logarithm table for 
large values of n. The relative error approaches zero as n -*• 00.

54. Let Fn be the number of ways in which 2n points on the circum
ference of a circle can be joined in pairs by n chords which do not intersect 
within the circle. We shall first obtain an expression for Fn in terms of 
F\, F2, . . . , F

Denote one of the points by Ax, and then, proceeding around the 
circle in a counterclockwise direction, let the remaining points be A2, 
Aa, . . . , A2n. The point Ax can be connected to any of the points A2, Ax, 
A6, , A2n, but to no others; for if it were connected to a point Am
with m odd, there would be an odd number of points on each side of the 
chord AxAm, so that no matter how these points were joined in pairs, one 
of the chords would have to cross AxA m.

Let us now compute how many ways of joining the points are such 
that Ax is joined to A2k. On one side of the chord A1A2k there are 2(k — 1) 
points (the points A2, A3, . . . , A2k_x), and on the other side there are 
2(n — k) points (the points A2k+x, A2k+2, . . . , A2n). The first 2(k — 1) 
points can be joined in Fk_x ways and the other 2{n — k) points in Fn_k 
ways (here we are making the convention that F0 =  1).

Therefore the number of solutions in which Ax is joined to AZk is 
Fk-iTn-k- Letting k  run from 1 to n and adding, we get

Tn = TqF — 1 +  FXFn_2 +  F2Fn_3 -T • • • +  Fn_2Fx +  Fn_xF3.

7 See for example R. Courant, Differential and Integra! Calculus, New York 
Interscience, 1937, p. 361-364.
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This formula is very similar to the one that was obtained for Tn in the 
previous problem. Let us first replace n by n +  2 in equation (1) of 
problem 53a. This gives

T  ___ T T  i rT T " \ T  T  . . . 1 T  7 " \ T T1 n+2 — 1 21 1 1 1 37 n "T" *■ 4 7 7*-l T  nJ 3 , 1 n + l J 2-

If we put Gn — 7i,i+2 this becomes

Gn =  G 0G „ _ i  T  GiGn_ 2 +  G 2G „ _ 3  +  • ■ • - ! -  G n_ 2G a +

Thus Fn and Gn satisfy the same recursion formula. Moreover F0 =  I 
and G0 = T2 =  1. Consequently, Fn = Gn for all values of n, and so

F =  T1 n J *n-f-2
l - 3 - 5 - - - ( 2 n - l ) 2„

(n +  1)!

Using the expressions we derived for Tn in terms of binomial coefficients,

_  2 (2n -  1 \ ____ _  1 /2k +  1\
” n +  11 n — 1 / n -f- 11 n I 2n -f 11 n /

55a. Denote one of the sectors by S0, and then, proceeding around the 
circle in a counterclockwise direction, denote the other sectors by Slt S2, 
• • • , S p_i. Put Sv — S0, S p+j =  Si, . . . , S2p — SQ, S2p+i — Si, etc. 
Suppose for the moment that we consider two colorings Cx and C2 of the 
circle to be different if they differ in the way any one of the sectors is 
colored. Since each sector can be colored in n ways, there are np colorings 
of the circle. This is not the answer to the problem, however, because 
some of these colorings can be obtained from others by rotating the circle. 
Let us write Cx ~  C2 (read: Cx is equivalent to C2) if C1 can be obtained 
from C2 by rotating the circle.

We can now divide the set of all colorings up into classes, by putting 
two colorings Cx and C2 in the same class whenever Cx ~  C2. Thus, the 
class containing a given coloring Cx consists of all colorings equivalent to 
Cx; we call it the equivalence class of Q .8

8 The relation Ct ~  C2 has the following three properties

(a) Cl ~  Ci
(b) If C\ — C2, then C2 ~  Cx
(c) If Ci ~  C2 and C2 ~  C3, then Ci ~  C3.

A relation having these three properties is called an equivalence relation. A set in which 
an equivalence relation is defined can always be divided up into equivalence classes by 
putting Ci and C2 in the same class whenever Cx ~  C2. For a more complete description 
of this procedure, see, e.g., R. E. Johnson, First Course in Abstract Algebra, Prentice-Hall, 
1953, pp. 8-11, or van der Waerden, Modern Algebra, Vol. I, Ungar, 1953, pp. 9-10.
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The problem is to determine the number of equivalence classes. To 
do this it is essential to know how many colorings are equivalent to a 
given coloring C. First of all if C is a coloring in which all p sectors are 
painted the same color, then C is equivalent only to itself. Therefore we 
have n equivalence classes (one for each of the n colors) consisting of a 
single coloring. If C0 is a coloring in which at least two sectors have 
different colors, then we will show that the colorings C0, C\, C2, . . . , Cv_x 
obtained by rotating C0 counterclockwise through angles of 0°, 360°jp, 
2 • (360°jp), . . . , ( / ? — 1)(360°/p), are all different. (Note that if p is not 
prime this need not be true; for example, by rotating the coloring 
illustrated in fig. 57 through an angle of 2 • (360°/6) =  120°, we obtain 
the same coloring.)

Suppose then that C, =  C3, where 0 ^  i < j  < p — 1. Putting k =  
j  — i, this means that the coloring Q  is not changed by a rotation through

Fig. 57

k • (360°//;), where 0 < k < p. Say for the sake of the argument that S0 
is colored red in the coloring Q. Then Sk must also be red, and the same 
is true of S2k< Sak, etc. Now the sectors S0, Sk, S2k, . . . , Siv_1)k are all 
difTercnt. For if Slk =  Smk where 0 ^  I < m ^  p — 1, then mk — Ik — 
(m — l)k would be a multiple ofp. This is impossible since 0 <  m — I < p, 
0 <  k <  p, andp is prime. Since there are only p sectors altogether, every 
sector is therefore of the form S lk, and so is painted red in the coloring Cf. 
This contradicts the fact that not all sectors were painted the same color 
in the coloring C0 (for Q  is a rotation of C„).

Thus wc have shown that when C,- is a coloring in which two sectors 
have different colors, the equivalence class of C0 contains exactly p 
members (namely C0, C,........ Cn_x).

Let N denote the total number of equivalence classes. Since we have 
seen that there are n equivalence classes of one member each, there must
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be jV — n equivalence classes ofp  members each. Since the total number 
of colorings is np, we therefore have

n +  (N — n)p =  np 
or solving for N, ;jP _  ;j

N = ---------- b n.
P

55b. Since the number N of part a is an integer by its definition, it follows 
that for any n the number np — n is divisible by p. This is Fermat’s 
theorem.
56a. Let the points be A0, Au A2, . . . , A going around the circle in 
the counterclockwise direction. Put Av = A0, A P+1 = Au . . . , A.2l> = A0, 
A2p-\.i =  A i, etc. Let us first compute how many self-intersecting polygons 
there are with vertices at A0, Au . . .  , Ap_u counting two polygons as 
different if they differ either in shape or location. To obtain a polygon we 
join A0 to any point A^ other than A0, then join A{ to any point Au other 
than A0 and At , and continue in this way until all the points are exhausted; 
then we join the last point As to A0. The point Afi can be chosen in 
p — 1 ways; once it is chosen, Aio can be chosen in p — 2 ways, etc. 
Therefore the total number of ways of choosing the sequence A , Ain, . . . , 
At i is (p — 1)(/? — 2){p — 3) • • • 1 = {p — 1)! Note, however, that each 
polygon having A0, Ax. . . . , /4p_j as its vertices is obtained twice by this 
process, once in the form A0A^Ait ■ • • At A0 and once in the form 
AoAi^Ai ■ • ■ Af A0. (For example, the heptagons AoA^^AoAgA^^Ag 
and A0Ar>A1AGA2A4A3A0 coincide but differ from all other heptagons
ô> Ai1Ai2 ■ • • AiaA0.)

Thus the total number of />-gons with the given points as vertices 
is (p — l)!/2. Among these /7-gons exactly one is not self-intersecting, 
namely A0AjA2 ■ • • A ^ A q. The others have at least one pair of sides 
which cross at an interior point. Therefore the number of self-intersecting 
polygons is (p — l)!/2 — 1. This is not the answer to the problem because 
some of these polygons can be obtained from others by rotating the circle. 
As in problem 55 we will say that two polygons P and Q are equivalent 
if they can be obtained from each other by rotating the circle; we then 
write P >—- Q.

The set of all self-intersecting polygons is now broken up into classes 
by putting P and Q in the same class whenever P ~  Q. The class in 
which a polygon P lies consists of all polygons equivalent to P\ it is called 
the equivalence class of P. Our problem is to determine the number of 
equivalence classes.

Let P0 be any polygon, and denote by P0, Px, P2, . . . , P ^  the 
polygons obtained by rotating P0 counterclockwise through angles of 0°, 
360°//7, 2(360°/p), . . . , ( / ? — 1) (360°jp). We will prove that P0, Pu . . . , 
Pp̂ i are either all different or all the same.
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Suppose they are not all different, so thatP, =  P3, where 0 ^  i < j  ^  
p  — 1. Putting k — j  — it follows that P{ is unchanged when the circle 
is rotated through k • (360°jp), where 0 < k < p. This means that if A0 
is joined to some point A t in the polygon Pu then Ak must be joined to 
Ak+t, A2Ic must be joined to A2k+i, etc. As in problem 55 we can show that 
the points A0, Ak, A2k, . . . , A{p_1)k are all different. For if Alk = A mk, 
where 0 5S / <  m iL p — 1, then mk — Ik = (m — l)k would be a multiple 
of p , which is impossible, since 0 <  m — I < p ,0  < k < p, and p is prime. 
Since there are only p  vertices altogether, A0, Ak, . . . , A{p_ 1)k therefore 
constitute all the vertices. Thus every vertex A s is joined to As+t, so that 
the polygon P* is regular (i.e., all its sides are equal and all its vertex angles 
are equal). In this case it is clear that

We have now shown that the equivalence class of a non-regular 
polygon has p members, while that of a regular polygon has only one 
member. The next step is to determine how many regular self-intersecting 
/7-gons there are. We saw that in a regular polygon each vertex As is 
joined to As+i, where t is a fixed number satisfying 1 t ^  p — 1. But 
as in our discussion of the method for obtaining all polygons, each regular 
polygon will arise twice in this process, since t and p — t give rise to the 
same polygon (t ^  p — t since p is odd). Therefore there are (p — l)/2 
regular polygons; since exactly one of these non-self-intersecting, there 
are (p — l)/2 — 1 =  (p — 3)/2 self-intersecting regular polygons.

Now let N  denote the total number of equivalence classes of self- 
intersecting polygons. Since there are (p — 3)/2 of these classes with 
one member, there are N — (p — 3)/2 of them with p members. There
fore, recalling that the total number of self-intersecting polygons is 
ip ~  1)1/2 — 1, we get

56b. Whenp — 2, we have [(/? — 1)! +  \]jp — (1 +  l)/2 =  1.
For p >  2, note that in part a A is an integer by its definition. Hence 

2N  is also an integer, which implies that [(p — 1)! +  \]/p is an integer. 
This means that (p — 1)! +  1 is divisible by p.

Note that ifp  is not prime, then (p — 1)! +  1 cannot be divisible by 
p. For in this case p  has a divisor d with 1 <  d <  p. Since ip — 1)! is 
divisible by d, {p — 1)! +  1 is not divisible by d, and so is not divisible by p.

Solving for N,
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V. PROBLEMS ON THE BINOMIAL COEFFICIENTS

! + " + " +

57b.

+  ” = (1  +  1)*

+  ( - ! ) " ( J  = ( !  “  1)" =  0

When n =  0, the sum in question reduces to the single term K 

57c. We make use of the fact that

n +  1 /n \ _  (ri +  1 )n(n — 1) • ■ ■ (n — k +  1) 
k +  l U /  1 • 2- 3 • • • k(k +  1)

It follows from this that

n +
k +

if n > 0.

I =  1.

(n +  1) • • +

so that

^0/ 2 \1 / 3 \2 / n +  l \n

.(" + ») +  (» + i) +  (" + i) +  . . .  + (» + ;
=  2"+1 -  1,

3  + ; ( ; ) + ; ( ; )  + +
1

n +  1 \ n
57d. We make use of the fact that if n ^  1,

2n+1 -  1 
n +  1

l)(n -  2)
1 • 2 ■ • • (k -  1)

0  -  k +  1) _  In — 1
1 k -  1

It follows that when n ^  1,

d  + 2(S) +  3(S) + +  n

= n
V )  +  ( V W ” 7 +  • • • +

n — 1 — n ■ 2n—1

57e. Proceeding as in part d we obtain

=  n ' n — V 
0

=  0 if n > 1.

n
+  ( - !> n—1 n — 1 

n — 1
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If n  =  1 the expression to be evaluated reduces to the single term j  =  1.

57f. The required sum is the coefficient of xn in the polynomial

xn(l -  x)n +  x " - ^  — x)n H----- +  x n~m(l -  x)n.

Transforming this polynomial, we obtain:

xn(l -  x)n +  x " - \ l  — x)n H--------b X n~ m{ \  -  x)n
=  (1 -  x)”(xn +  x"-1 +  xn- 2 +  • • • +  xn~m)

y T i+ l  ___ ^ . n — m

=  (1 -  x)n - -------- - ----- =  - (1  -  x)”- 1{x"+1 -  x”- m}
x — 1

=  x”- m(l -  x)"-1 -  Xn+1( l  -  x)n~\
Consequently, the coefficient of xn is (—l)m| ”  ̂ J for m <  n  and

0 for m =  n (compare with part b). ' '

57g. The sum to be evaluated equals the coefficient of xk in the polynomial

(1 +  x)n +  (1 +  x)n+1 +  (1 +  x)n+2 + ----- b (1 +  x)n+m.

Making use of the formula for the sum of a geometric progression, 
we obtain:

(1 +  x)n +  (1 +  x)n+1 + ----- b (1 +  X)n+m
=  (1 +  x)"+m+1 -  (1 +  X)" \ . +m+1

(1 +  x) -  1 X u  }
(1 +  X)"}.

It is clear from this that the coefficient of x k is 

for k < n and ^  ^  M for k = n.

'n + m 1 
k  +  1

57h. The expression to be evaluated equals the coefficient of x2n in the 
polynomial

x2"(l — x)271 +  x2n-1(l — x)2"-1 +  x2n-2(l — x)2n- 2 +  • • • +  xn(l — x)".

First of all we add to this polynomial the following terms, which are 
of degree less than 2n:

x7l-1(l -  x)"-1 +  x"-2(l -  x)71- 2 +  • • • +  x(l -  x) +  1.

Of course, adding on these terms does not affect the coefficient of x271. 
The sum obtained is

(x -  x2)2” +  (x -  X2)2"-1 +  (x -  x2)2”- 2 +  • • • +  (x -  x2) +  1 
_ (x -  x2)2n+1 -  1 x2n+1(l - x)2n+1 - 1 _  1 -  x2n+1(l - x)2w+1

(x — x2) — 1 —x2 +  x — 1 x2 — x +  1
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Consequently, we have to compute the coefficient of x2'1 in the 
expression

[l -  x2n+1(l -  x)2n+1] ------     =  [l -  x2"+1(l -  x)2n+1] .
1 — x +  -x2 1 +  x 3

By virtue of the formula for the sum of an infinite geometric pro
gression,

(This formula, of course, makes sense only if x has absolute value less 
than 1, but we can restrict our attention to those values of x if we are only 
interested in the coefficients of polynomials in x.) Since x2n+1(l — x)2n+1 
contains only terms of degree higher than 2n, the required sum is the co
efficient of x2” in the product (1). It follows from this that

57i. The expression to be evaluated equals the coefficient of x" in the 
polynomial

(1 +  x)2n +  2(1 +  x)2n~l +  22(1 +  x)2n- 2 + ----- b 2"(1 +  x)n.

By the formula for the sum of a geometric progression,

(1 +  x)2” +  2(1 +  x)2”- 1 +  22(1 +  x)2"-2 +  • • • +  2n(l +  x)n

( 1)

1 for 2n = 6k , that is, for n = 3k,

0 for 2n = 6k + 2, that is, for n =  3k +  1,

— 1 for 2n = 6k +  4, that is, for n =  3k +  2.

=  (1 +  x)2" 1 +
1 +  x +  (1 +  x)2+  x)2 +  ' “  +  (1 +  x)"_

2"

1 +  ^

=  [2"+1(l +  x)n -  (1 +  x)2n+1] — —
1 —  X

1
1 -  X

But for |x| <  1,
=  I  +  X  +  X 2 +  X 3 +  • • •
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Consequently, the required sum is the coefficient of x n in the expression

2n+1(l +  x)n(l + x + x2 -\----- ) -  (1 +  x)2B+1(l +  x +  x2 +  • • •)

If we multiply any polynomial P(x) =  a0 +  a\X +  a2x2 +  • • • + a Yx v 
byl +  x  +  x2 +  • • • , then the coefficient of xn in the resulting expression 
will be a0 +  +  az +  • • • +  an, where we put ak =  0 if k >  N. In fact,
the terms of degree n in the product are obtained by multiplying each term 
akxk of P(x) (0 5S k ^  ri) by the term xn~k in the sum 1 +  * +  x2 +  • • • . 
Thus, after multiplying out the product 2n+1(l +  x)"(l +  x  +  x2 +  • • •), 
the coefficient of xn will be the sum of the coefficients of the polynomial 
2n+1(l +  x)n, that is, 2n+1(l +  1)" =  22n+1 (compare with part a). The 
coefficient of xn in the product (1 +  ^)2n+1(l -f x  +  x2 +  • • •) is the sum 
of the coefficients of x° =  1, x, x2, . . . , x n in the polynomial (1 +  x)2n+1, 
that is, the sum of the first half of the coefficients of the polynomial

(1 +  ;t)2n+1. But since =

sum of the coefficients of (1 +  x)2n+1; that is, it equals £ • 22n+1 =  22n. 
It follows from this that the coefficient of xn in the expression

2»+i(i +  x)n(l +  x +  x2 H----- ) -  (1 +  x)2n+1(l + x + x2 + ■ ■•)

is 22n+J — 22n =  22n.

57j. The expression to be evaluated equals the coefficient of x n in the 
following product:

\2n^n k j ’ SUm *S eclua  ̂ t0

+  L  ^ +

X +
n

n — 1 x + x2 +  • • • +

But and consequently,

n
+

n
n -  1 * + x2 + + n

+  • • • + Xn

=  (1 +  x)”

We therefore have only to find the coefficient of x” in the product 

(1 +  x)n(l +  x)n =  (1 +  x)2n. This coefficient is clearly P ”).
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57k. Here we have to determine the coefficient of xn in the product

-  J *  + x2 -

+  ! . - i r l - i r + " " f
This product equals (1 — x)"(l +  x)n =  (1 — x2)n. Therefore the coefi

!2m
ficient of xn is 0 when n is odd, while if n — 2m is even, itis (—1)”

571. It follows from the identity

(1 +  *)"(! +  x)m =  (1 +  x)n+m

m

that the expression equals (n 7̂ (compare with the solutions to parts 
j and k). '  k '

58a, b. From problems 57a and 57b we have

2n

n
3 •• • + ( - ! )

0 if n >  0 

.1 if n =  0

Adding these two equations and dividing the sum by 2, we obtain

2n_1 if n >  0 

.1 if n =  0,

which gives the answer to part a.
Subtracting the second equation from the first and dividing the 

difference by 2, we get

; ■ ) + ( " ) + ( " ) + =  271—1 (n ^  1),

which gives the answer to part b.

58c, d, e, f. We recall that if i = V — 1, then i2 = — l , /3 =  —i,i* =  I, 
/5 =  i, and in general

1 if k is of the form 4/

/ if k  is of the form 4/ +  1
ik = •

— 1 if A: is of the form 4/ +  2

— / if k is of the form 4/ +  3
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Therefore, using the binomial theorem to evaluate the expressions (1 +  l)n, 
(1 +  /)", (1 — l)n, and (1 — /)”, we obtain

' » fe) » ■ ( : ) - 0 - ' ( ■ > ) + ■ - ■ + ' ■ ( ; ) - u + o -

( s )  -  '( 'i )  -  ( 2) + ' O + •  ■ ■ + = < « -  o ’ -
Adding these four equations and dividing by 4, we get

'2n +  (1 +  ;)" +  (1 -  i)n 
4

if n >  0

if n =  0

This solves part c, but the answer for n >  0 can be further simplified. For 
let us write the complex numbers 1 +  i and 1 — / in trigonometric form:

1 +  / =  V2 (cos 45° +  / sin 45°)
1 — / =  yjl (cos 45° — / sin 45°).

By de Moivre’s theorem1 it follows that

(1 +  /)" =  (V/2)7!(cos n • 45° +  / sin n • 45°), 

(1 — i)n — (V 2)"(cos n • 45° — / sin n • 45°).
so that

91+2
(1 +  /')" +  (1 — i)n — 2(V2)n cos n • 45° =  2 2 cos n • 45°.

Now

cos n ■ 45° =

1 if n is of the form 8k

-L  if n is of the form 8/c ±  1 
V 2
0 if n is of the form 8/c ±  2 

---- \z. if n is of the form 8/c ±  3
V 2

— 1 if n is of the form 8/c +  4
1 This is the name of formula (cos a +  / sin a)n =  cos net +  / sin net. To prove it 

one needs only to use the identity (cos a - f  i sin a)(cos ft +  / sin {)) =  cos (a +  p) +  
i sin (a +  fi) (which follows directly from the addition formulas for sin x  and cos x) 
and apply mathematical induction.
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Therefore, if n ^  1 we have

! + U + s +

n—22n-2 +  2 2 for „ =  gk

n - 3

2n~2 +  22  for n = 8k ±  1

>ti—2

\  n—2

for n = 8k +  2
n - 3

2 2 for n =  ±  3

2"-2 -  2 2 for n =  8fc +  4 
To solve part d we multiply equations (1), (2), (3), and (4) by 1, — /, 

— 1, and /' respectively, and add. This gives (noting that n ^  1),

4{ (l)  +  ( 5) +  ( 9 )  +  "  '} =  2" -  id +  iT +  id -  /)"■ 
Proceeding as in part c we find that

n —2

2«-2 +  2 2 sin n ■ 45°

for n =  Sk or n =  +  4>n—2

n - 3
> n—2 +  2 2 for n =  +  1 or n = 8k +  3

n—2
2n-2 +  2 2 for n = +  2

71—3
} 71—2 2 2 for n = %k — 1 or n = %k

n — 2

271-2 -  2 2 for n =  -  2
To solve part e, multiply equations (1), (2), (3), and (4) by 1, —1, 1, 

and —1 respectively, and add. This gives

4h m m ;o) + '
from which we deduce as before that

=  2" -  (1 +  i)n -  (1 -  /)",

2 +  (S) +  (,"oJ +

ti—2
=  2"~2 -  2 2 cos n- 45°

71 — 2
2n-2 _  2 2 for n = 8k

n —3

2»-2 _  2 2 for n =  8fc ±  1 
2n“2 for n =  ±  2

n - 3) rt—2+  2 2 for n = %k ±  3
71—2

for n — 8k +  4
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Finally, to solve part f we multiply equations (I), (2), (3), and (4) by 
1, /, —1, and —/ respectively, and add. This gives

H b )  + (?) + (,") + ' '
Proceeding as before, we find that

=  2" +  /(l +  0” -  K1 -  0"•

l i
n—2

+ 2"-2 -  2 2 sin n- 45c
) 71—2

>71—2

for n =  8/c or n =  8/c +  4

2 2 for n =  8/c +  1 or n =  8/c -f- 3

2n-2 _  2"22 for n =  gfc +  2
n—3

>71—2 +  2 2 for n =  8/c — 1 or n =  8/c — 3
m -2

2n-2 +  2 2 for n =  8/c -  2 
Remark. Part e could also be solved by subtracting c from a, and part f could 

be solved by subtracting d from b.

58g, h, i. These problems are solved in much the same way as the four 
preceding ones; only instead of the numbers 1, —1, —i, which are the
four fourth roots of unity (that is, the four solutions of the equation 
x4 =  1), we use here the three cube roots of unity (the three solutions of 
the equation x3 =  1), which have the values

1,
- 1  +  i\! 3 , - 1  -  i\J 3--------------, and -------------

2 2
We will use the notation co =  (—1 +  i\J3)/2; then to2 =  (—1 — /V3)/2. 
Note further that 1 +  co +  a>2 =  0, and that

1 if k =  3/

a>': = I co if k — 31 +  1 

U 2 if k =  3/ +  2
Applying the binomial theorem to evaluate (1 -j- 1)", (I +  co)n, and 
(1 +  co2)”, we obtain
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Adding these three equations, we get

3{(o) +  (”) +  (g) +  ■ • •} =  2" +  (1 +  c o y  +  (1 +  CO2)".

Let us now write the complex numbers 1 +  co and 1 +  co2 in 
trigonometric form:

1 +  co =  =  cos 60° +  i sin 60°
2

1 +  co2 1 -  i\ / 3 
2

=  cos 60° — i sin 60°.

Applying de Moivre’s formula, we obtain

(1 +  co)" =  cos n • 60° +  i sin n • 60° 
(1 +  co2)" =  cos n • 600 — i sin n • 60°,

so that

Now

Therefore

2" +  (1 +  co)" +  (1 +  co2)" =  2" +  2 cos n ■ 60°.

cos n ■ 60°

1 if n is of the form 6k 

|  if n is of the form 6k ±  1

— |  if n is of the form 6k ±  2

— 1 if n is of the form 6k +  3.

+  • • • =  £(2" +  2 cos n • 60°)

' K2” +  2) for n = 6k 

-»(2" + l )  for n =  6fe ±  1 

~~ 3(2" -  1) for n = 6k ±  2

. J(2n -  2) for n = 6k + 3.
To solve part h, multiply equations (5), (6), and (7) by 1, co2, and co 

respectively, and add. This gives

3 ( ( l j  +  ( 4 )  +  ( 7 )  +  • • • } =  2" +  co2( l  +  co)" +  co(l +  co2)".

Since 1 +  co +  co2 =  0, we have co2 =  —(1 +  co), and co =  —(1 +  co2). 
Therefore

co2(l +  co)" =  —(1 +  co)"+1 =  —cos (n +  1)60° — i sin (n +  1)60° 
co(l +  c/j2)" =  —(1 +  co2)"+1 =  — cos (n +  1)60° +  i sin (n +  1)60°.
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This gives

2" +  a>2(l +  to)'1 +  to(l +  to2)" =  2n -  2 cos (n +  1)60°. 

Therefore

( l )  ( 4 )  ( 7 )  +  ' ‘ ~  M 2 " — 2 cos (n +  1)60°}

5(2" — 1) for n — 6k or n =  6k — 2

^(2" +  1) for n = 6k 1 or n = 6k +  3

i(2n +  2) for n ~  6/c +  2 

K2n - 2 )  for n = 6k — 1.
To solve part i we multiply equations (5), (6), and (7) by 1, to, and to2 

respectively, and add. This gives

3  ( 2 )  +  ( 5 )  +  ( g )  +  • • • =  2 * +  " (1  +  *0" +  co\l +  a**)".

Proceeding as above we find easily that

+ + H------=  \{2n +  2 cos (n +  2)60°}

l(2n — 1) for n =  6k or n = 6k +  2

i(2n -  2) for n =  6k +  1

\{2.n +  1) for n ~  6k +  3 or n — 6k — 1

31(2n +  2) for n = 6k -  2.
This result also follows by subtracting g and h from the equation

59. We will prove the theorem by mathematical induction on n. When 
n =  0 both sides of the formula reduce to 1, and therefore the theorem is 
true in that case. Now suppose that it is true for some integer n ^  0, 
that is, that

(a +  &)"!* =  an +  | ”j a (7!- 2) 1 V  h + ------ b hn|A

(1)
We must then show that the theorem is also true for n +  1. To do 

this, multiply both sides of equation (1) by a +  b — nh. On the left-hand 
side we obtain {a +  b)(n+1)|/l, as can be seen at once from the definition.
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On the right-hand side we obtain a sum whose /-th term (where i runs 
from 0 to n) is

+ b -  nh)=  -  (n -  iff)

+  -  ih)

_  n̂ja(7l-i+1) I hbi I h ja(n-i)l hb u+1) I
Summing over i we get

+  f y a n' hb1' h + ••• +  ^  ” J u 1 I V *  +  ^ b (n+1)' \

Using the relation ^   ̂j  +  ( / )  =  (” T  )̂ ’ t 1̂*s ^ecomes

f l (n + l)  | ft _|_ 1 | f t^ l  | h _|_ ^  I I * foin+l) | h

(2)
Thus we have shown that (a +  £)(n+1)|;i is equal to the expression (2), 
which is precisely the statement of the theorem for n -j- 1. This completes 
the induction.

60a. Using the fact that
fn\ n(n — 1) ■ • • (n — i +  1) ni]1

(! l!
we obtain

n\ /  m \ n111 m(k l) 11
/ / \k  — ij i! (k — /)!( k - i ) l  

1 k\ n* \ i
k\ i! (k -  /)! 

Consequently the sum to be evaluated equals

fc!l\0

+  • • • + ij =  (m +  n)k 11 =  +  nj

This solution was obtained before in a different way (see problem 57 I).
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60b. The z-th term of the sum to be evaluated (where z runs from 0 to k) 
can be rewritten as follows:

( - i  y;/m +  z\ /  n
k - i =  ( - D

z On +  z)11 ni \ 1 „IM  | 1

z! ( k - i ) \

+  i)f| V*-*’11.

Now

( —lY(m  +  z)*'11 =  (— \) \m  +  0(w +  i — 1) ‘ • ‘ On +  1)

- (—m — 1)(—m — 2) • • • (—m — i +  1)(—m — i) 

■= ( - m -  l)*11.
Consequently,

Therefore our sum equals

^ { ( o ) ”*11"1" ( i ) " “"1 ) l l( -m “  1)111

+  ( 2)n “ - 2,|1(-™  -  D2' 1 +  ' ' ' +  (£ ) ( -m  -  l H

_  (n — zrz — l)fcl 1 _  (n — m — l)(zi — m — 2) • • • (n — m — k)
~  k\ ~  k\

If n — m — 1 ^  k, this equals

Note that since 
the form

we can rewrite this identity in

-  ••• +  ( - ! )
ki m +  k\ 

m

(n — m — l)(zi — m — 2) • • • (zi — m — k)
k\

61a. Consider the shortest paths which lead from the intersection (0,0) to 
the intersection (zi — m +  1, m) in fig. 58. The number of such paths is
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m ^)' ^et us now these paths into the following pairwise
disjoint classes. The first class shall consist of those paths which start along 
the “horizontal” street; there will be as many such paths as there are 
paths joining the intersection (1,0) to the intersection (n — m +  1, m),

that is, The second class shall consist of those paths which start

by going one block up the “vertical” street to the intersection (0,1) and 
then turn right; the number of such paths will be the number of paths 
joining the intersection (1,1) to the intersection (n — m +  1, m), that is, 

n -  V 
m — 1,

(0 ,m) (j, m ) _____    ( n - m  + 1,m)

2 ) (1, 2 )

,1)  (1,1)
4------ i ------- -

(0 ,0) (1,0 )

Fig. 58

The third class shall consist of the paths which start by going two 
blocks up the vertical street to the intersection (0,2) and then turn right; 
the number of such paths is equal to the number of paths joining the

points (1,2) and (n — m +  1, m), that is, ^  ^ j .  The fourth class shall

consist of all the paths which start by going three blocks up the “vertical”

street to the intersection (0,3) and then turn right (a total of ^

paths), etc. The last class consists of the path which goes m blocks

up the vertical street and then turns right (there is y WI =  1 such
/n +  1\ \ U /path). Since each of the I ^ 1 shortest paths connecting (0,0) to

(n — m -f 1, m) belongs to exactly one of the classes considered above, 
the relation to be proved follows immediately.

Note that this relation can also be derived easily from the result of

problem 57g. For since I n I =  ( n I, the relation to be proved can 
be rewritten in the form \ \

n
n — m

n -  1
n — m +

n — 2 
n — m +  • • • +

n — m 
n — m

n +  1
m
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Setting n = m +  k and reversing the order of the terms in the left-hand 
side, we obtain:

b+{kt 1)+{kt 2)+-+(k+km)=[m+«+1)
= lm + k +  1\

I k +  1 / '
But this is a special case of problem 57g.

It is also possible to derive the required relation directly from the 
binomial theorem: this amounts to determining the coefficients of x m 
in the polynomial

(1 +  x)n +  x(l +  x)"-1 +  x2(l +  x)n~2 -\--------b xm{1 +  x)n~m,
which is the sum of m +  1 terms of a geometric progression with ratio 
*/( 1 +  x).
61b. Consider all shortest routes which lead from the point (0,0) to the

point {n — m +  k +  1, m). The number of such paths is

We will divide these paths into pairwise disjoint classes. To do this, we 
draw a vertical line between the &-th and (k  +  l)st vertical streets (fig. 59).

n +  k  +  1 
m

Fig. 59

Each of our paths meets this line in a single point. The number of paths 
which meet this line at a point on the r-th horizontal street is the product of 
the number of paths joining the point (0,0) to the point (k,r) and the number 
of paths joining the point (k +  1, r) to the point (n — m +  k +  1, m).

This number therefore equals ^  ^  r̂ j. Setting r =  0, 1, 2, . . . ,  m

and adding the expressions obtained, we find that

as was to be shown.
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In the special case k = 0, we obtain

which is the result of part a. For k = 1, we obtain the following relation:

m \ m — 1
+  • • • +  ( m  - i -  1 )

n — m 
0

n +  2 

m

61c. Consider again our geometric diagram, j  is the product of

the number of shortest paths from the point (0,0) to the point (m — k , k) 
and the number of shortest paths from the point (m — k, k) to the point 
(n m — k, k); this product is the number of shortest paths from the 
point (0,0) to the point (« -f m — k, k) which pass through the point

Fig. 60

is the number of shortest

paths from the point (0,0) to the point (« +  m — k, k) which pass through

is the number of shortest

paths from the point (0,0) to the point (n -f m — k, k) which pass through

the point (m — k +  2, k — 2), etc. and is the number of shortest

paths from the point (0,0) to the point (n +  m — k, k) which pass through 
the point (m — k +  k, 0) =  {m,0). But since each of the shortest paths 
from the point (0,0) to the point (n +  m — k, k) must intersect the line 
drawn in fig. 60 at exactly one point, the sum involved in problem 61c 
is the total number of shortest paths joining the points (0,0) and

(n +  m — k, k); hence it equals

For other applications of the method used here, see the solutions to 
problems 83a-c below.
62. We will at once solve the more general problem b. Select any path 
in our network of roads which connects the point A to one of the inter
sections of the thousandth row; we will determine how many people take

in +  m\
I k

the point (m — k 1, k — 1); m
k -  2/ \2

(m — k, k) (fig. 60). Similarly, ^ j j M
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this path. The path in question consists of 1000 separate “blocks” ; 
moreover, at the end of each block the people who have been walking 
along that block split into two groups: half of them continue on the path 
in question and half of them turn off it. It is clear that of the 21000/2 =  
2999 people who start out along the path, only 2° =  1 keeps on it until the 
end. Thus, exactly one of the 21000 persons takes each of the possible 
paths in the network. It follows from this that the total number of 
paths is 21000 (which can also be verified without difficulty by a direct 
computation). The problem thus amounts to that of determining how 
many different paths lead to each intersection of the thousandth row. 
But the network of roads represented in fig. 7 (see p. 19) is exactly the 
same as the network of roads represented in fig. 6; only in fig. 6 the 
“streets” go in the horizontal and vertical directions and in fig. 7 they go 
in the directions L and R. For a person to arrive at the A-th intersection 
(counting from left to right and calling the leftmost intersection the 0-th 
of the 1000th row, he would have to go A blocks in the direction R (and 
the remaining 1000 — k  blocks in the direction L). Consequently, the

total number of paths which lead to the A-th intersection is (
/1000\ \  k I

Thus I ^ 1 =  1000!/[A!(1000 — A)!] people arrive at the A-th inter

section, where 0 ^  A ^  1000.
From this result it follows in particular that the numbers of people 

who arrive at the three leftmost crossings Bx, B2, and B3 are respectively
11000

=  h
1000 =  1000, and =  (1000 • 999)/2 =  499,500.

This same result could also have been obtained by direct computation.

63. The three relations to be proved can easily be derived from the fact 
that the number Bnk is the coefficient of xk in the polynomial (1 +  x +  x2)":

(1 +  x +  x2)" =  Bn° +  Bn'x  +  B 2x2 +  • • • +  B 2nx2n. (1)
Let us first prove this formula.

For n =  0,
(1 + x  +  x2) ° =  1;

that is, the formula holds (since Bn° =  1). Suppose now that this formula 
has already been established for the exponent n; let us show that in this 
case it will also hold for the exponent n +  1. For this purpose, let us 
multiply both sides of equation (1) by (1 +  x +  x2). On the left side we 
get (1 +  x +  x2)"+1, and on the right side we get
(Bn° +  Bn3x  +  B 2x2 +  Bn3x3 +  • • • +  5 b2"x*")(1 +  x  +  x 2)

=  Bn° +  (Bn* + Bn')x +  (Bn° + B ^  +  Bn2)x2 
+  (Bn' +  B 2 + Bn3)x* +  • • • +  ( B f - 1 +  Bn2n)x2n+l +  5„2nx2n+2.
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By virtue of the rule for forming the numbers Bk+1, the latter expression 
equals

f i °  i n  1 _i_ a -  y 2 i n 3 v 3 4 -  • • • o 2 « + 2 v 2 ” + 2
° n + l  +  +  i >«4.l X  +  t f r H  1 x  +  +  ° n + l  X

We have thus demonstrated that if our formula holds for the exponent n, 
it also holds for the exponent n +  1. Since the formula holds for n =  0, 
it must therefore hold for all n.

Note further that it follows from the symmetry of the triangular 
array of numbers that Bnk = B ^~ k for arbitrary n and k ;< 2n.

Now the required relations can be proved immediately in exactly the 
same way that the relations of problems 57a, b, and j were proved.

a. Bn° +  Bn' +  B 2 +  • • • +  Bn2n =  (1 +  1 +  ])» =  3".

b. Bn° - B n' + B 2 --------+  Bn2n =  (1 -  1 +  1)" =  1.

c. The sum to be evaluated is the coefficient of x2n in the polynomial 

(B„° +  Bn'x  +  Hr ‘ • ' +  Bn2nx2n)

X (Bn2n +  B l ^ x  +  Bln~2x +  • • • +  Bn°x2n). 

But since B%l~k =  Bnk, this polynomial equals

(5„° +  Bnlx + B 2x2 +  • • ■ +  Bn2nx2nf  = (I + x + x2)2”, 

from which the required relation follows immediately.

VI. PROBLEMS ON COMPUTING PROBABILITIES

64. We are as likely to encounter any one of the 10,000 bicycles as any 
other; hence there are a total of 10,000 equally likely possible outcomes 
to this experiment. It remains only to compute the number of favorable 
outcomes, that is, the number of bicycles whose license numbers do not 
contain the digit 8. This number can be determined with the aid of the 
following method. Let us prefix to each number of less than four digits 
enough zeros to make four figures (for example, instead of 26 we will 
write 0026), and instead of 10,000 let us write 0000. In doing this, we have 
not changed the number of license numbers which contain no 8’s among 
their digits. But the numbers which we how have (0000, 0001, 0002,. . . , 
9999) constitute all possible four-digit numbers. If one of these numbers 
does not contain the digit 8, then the possibilities for its first digit are
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0, 1,2, . . . , 7, 9; these are likewise all possibilities for the second, third, 
and fourth digits. Combining each of the nine possible values for the first 
digit with each of the nine possible values for the second digit, each of the 
nine possible values for the third, and each of the nine possible values for 
the fourth, we obtain a total of 94 four-digit numbers which do not 
contain the digit 8 (compare with the solution to problem 11).

Thus, of the 10,000 equally likely outcomes (one corresponding to 
each of the 10,000 bicycles which one might first encounter), 94 are 
favorable, from which it follows that the required probability is 
94/l 0,000 =  (0.9)4 =  0.6561.

65a. The experiment under consideration consists of drawing four cards at 
random from a given set of six cards. There are six possible outcomes for 
the drawing of the first card; corresponding to each of these six possibilities 
there are five possible outcomes for the drawing of the second card 
(any of the five remaining cards can be drawn); corresponding to each of 
these outcomes there are four possible outcomes to the drawing of the 
third card; and corresponding to each of the latter outcomes there are 
three possible outcomes to the drawing of the fourth card. Combining 
each of the six possibilities for the first card with each of the corresponding 
five possibilities for the second card, we obtain 6 • 5 =  30 possible out
comes for the drawing of the first two cards; similarly there are 30 ■ 4 =  
120 possible outcomes for the drawing of the first three cards and 120 • 3 =  
360 possible outcomes for the drawing of all four cards. Thus the experi
ment can lead to any of 360 different outcomes; these outcomes are all 
equally likely.

Exactly one of these outcomes is favorable, namely, that in which 
the D is picked on the first draw, the E on the second draw, the A on the 
third draw, and the F on the fourth draw. Consequently, the required 
probability is 1/360 0.003.

65b. Here again the experiment consists of drawing four cards in suc
cession from a set of six cards; consequently there are 360 possible 
outcomes to the experiment. But here the computation of the number of 
favorable outcomes is more complicated than in the case of part a since 
some letters are repeated in the set of cards. The favorable outcomes are 
those in which one of the three D cards is picked on the first draw, one 
of the two O cards on the second draw, one of the two remaining D cards 
on the third draw, and the one remaining O card on the fourth draw. 
Combining each of the three possibilities for the first card, each of the two 
possibilities for the second card, each of the two possibilities for the third 
card, and the single possibility for the fourth card, we obtain a total of 
3 • 2 • 2 ■ 1 =  12 different favorable outcomes. Consequently, the prob
ability to be computed is 12/360 =  1/30 xn 0.033.
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66. Let the numbers drawn be (in the order of drawing) a, b, c, d, e. The 
number obtained is then

N  =  10,000a +  1,0006 +  100c +  lOrf +  e.

As in the preceding problem we see that the number of different possible 
outcomes of the experiment is 10 • 9 • 8 • 7 • 6 =  30,240. Let us now 
determine the number of favorable outcomes.

In order that N  be divisible by 495 =  5 * 9 ■ 11, it is necessary and 
sufficient that it be divisible by 5, by 9, and by 11. Since

10,000a +  1,0006 +  100c +  \0d

is always a multiple of 5, N  is divisible by 5 if and only if e = 0 or e =  5. 
Since

N = (9999a +  9996 +  99c +  9d) +  (a +  6 +  c +  d +  e),

and since the first parenthesis is always a multiple of 9, N  is divisible by 9 
if and only ifa  +  6 +  c +  r / + e  jS-i

Finally, since

N  =  (99,999a +  10016 + 99c + \ \d) + (a -  b + c -  d + e),
and since the first parenthesis is a multiple of 11, N  is divisible by 11 if 
and only if a — 6 +  c — d +  e is.

Now
a +  6 +  c +  a f + e ^ 0 + l  +  2 +  3 +  4 = 1 0 ,  

and a +  6 +  c +  r / + e ^ 9  +  8 +  7 +  6 +  5 =  35.
Therefore a +  6 +  c +  r f + c  can be divisible by 9 only if it equals 18 or 
27. Let us consider these cases separately.

1. Let a +  6 +  c +  <7+c =  18. Then a — 6 +  c — J  +  c is  even 
(since it is equal to 18 — 26 — 2d) and \a — 6 +  c — d +  e\ <  18. 
Consequently „  -  b  +  c -  d  +  e  =  0 ,

since 0 is the only even multiple of 11 in the permitted range. Therefore

a +  c +  e =  6 +  cf =  9.

If e =  0, then a +  c =  6 +  J = 9 .  Hence (a,c) and (b,d) must be 
chosen from the eight pairs (1,8), (2,7), (3,6), . . . ,  (8,1). Once (a,c) is 
chosen, there are only six possibilities left for (b,d), since it cannot be equal

1 The same reasoning shows that any positive integer N  is divisible by 9 if and only if 
the sum of its digits (in the decimal scale) is divisible by 9. This is the rule of “casting 
out 9’s”. Similarly it can be shown that N  is divisible by 11 if and only if the alternating 
sum of its digits (i.e., the first digit minus the second plus the third, etc.) is divisible by 11. 
See, e.g., Hardy and Wright, An Introduction to the Theory of Numbers, New York, 
Oxford, 1960, p. 114.
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to (a,c) or (c,a). Therefore we obtain a total of 8 • 6 =  48 solutions 
when e =  0.

If e =  5, then a +  c =  4, b + d = 9. Therefore (a,c) must be one of 
the pairs (0,4), (4,0), (1,3), or (3,1). In the first two cases, (b,d) can be any 
one of the eight pairs (0,9), (1,8), (2,7), (3,6), (6,3), (7,2), (8,1), or (9,0). 
But in the last two cases (b,c) must be one of the four pairs (0,9), (2,7), 
(7,2), or (9,0). Therefore we obtain a total of 2 • 8 +  2 ■ 4 =  24 solutions 
when e =  5.

Thus the total number of favorable outcomes in case 1 is 48 +  24 =
72.

2. Let a +  b +  c +  d +  e — 27. In this case a — b + c — d + e is 
odd (since it equals 27 — 2b — 2d). Moreover,

27 > a - b  + c -  d + e >  2 7 - 2 - 9 - 2 - 8  =  - 7 .

Hence a — b + c — d ) - e  = 11, since there are no other odd multiples 
of 11 in the permitted range.

It follows that b +  d — 8 and a +  c +  e — 19. Here e =  0 is 
impossible, since 9 +  8 <  19, and so we must have e = 5. This gives 
a +  c — 14, so that (a,c) must be one of the pairs (6,8) or (8,6). This 
eliminates the values 5, 6, and 8 for b and d, and therefore (b,d) must be 
either (1,7) or (7,1). Hence we obtain 2 -2  =  4 favorable outcomes in 
this case.

Combining cases 1 and 2 we get a total of 72 +  4 =  76 favorable 
outcomes. The desired probability is therefore 76/30,240 =  19/7560 
0.0025.

67. The experiment in question consists of selecting the forgotten digit 
at random; if this yields a wrong number, then another digit is chosen 
at random. Thus the possible outcomes fall into two classes: those in 
which two numbers are chosen and those in which only one is chosen. 
(The second class contains only one outcome: that in which the right 
number is chosen the first time.) However, we have no reason to suppose 
that the first kind of outcome and the second kind are equally probable; 
in fact they are not. To obtain a system of equally probable outcomes it 
is convenient to assume that two numbers are picked in all cases, that is, 
that even when the boy gets the right number the first time, he makes a 
second call. (This, of course, would not be done in practice; but by con
sidering this fictitious experiment we can simplify the solution. The 
probability of getting the right number is the same in both cases—making 
a second call has no bearing on the outcome of the first call.)

The revised experiment, which consists merely of making two different 
random choices of the forgotten digit, has 10 • 9 =  90 equally probable 
possible outcomes (any of 10 numbers can be chosen the first time, and the
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second time any number can be drawn except the one drawn the first time). 
The favorable outcomes are obviously the nine in which the right number 
comes up the first time and some other number the second time, and the 
nine outcomes in which one of the nine wrong numbers comes up the first 
time and the right number comes up the second time. Thus the total num
ber of favorable outcomes is 9 +  9 =  18. Consequently, the required 
probability is 18/90 =  1/5 =  0.2.

68a. Here the experiment consists of having 12 people tell in what months 
their birthdays occur. The birthday of the first person can fall in any of 
the 12 months, and the second person’s birthday can likewise occur in 
any of the 12 months. Combining each of the 12 possibilities for the 
first person with each of the 12 possibilities for the second person, we 
obtain 12T2 =  122 equally likely possible outcomes for the first two 
people. Similarly we will have 123 equally likely possible outcomes for 
the first three people, and so forth; for all 12 people we obtain 1212 
possibilities.

Let us now compute how many of these outcomes are favorable, that 
is, such that the birthdays all occur in different months. In a favorable 
outcome, the first person’s birthday can occur in any month, but the second 
person’s birthday must then occur in one of the 11 other months, the 
third person’s birthday in one of the 10 remaining months, etc., up to 
the last person, whose birthday must occur in the one month which 
remains. Combining each of the 12 possibilities for the first person 
with each of the corresponding 11 possibilities for the second person, 
each of the 12-11 possibilities thus obtained for the first two people with 
each of the corresponding 10 possibilities for the third person, etc., we 
obtain a total of 12 • 11 • 10 • • • 1 =  12! favorable outcomes. Con
sequently, the required probability is 121/1212 an 0.000054.
68b. The total number of possible outcomes is obtained here as in part a 
and equals 126. Let us now compute the number of favorable outcomes. 
The number of outcomes in which the birthdays of all six people occur in 
two given months (say, January and April) is 26; this number is obtained 
by exactly the same reasoning as we used in obtaining the number 126 for 
the total number of possible outcomes. Of these 26 outcomes, we must 
discard the two in which the birthdays of all six people occur either all in 
the one month (January) or all in the other month (April). These two 
outcomes are not favorable, since in them the six birthdays are not dis
tributed over two months, but lie in just one month. Thus, the num
ber of favorable outcomes in which all the birthdays lie in two specific 
months equals 26 — 2. Since one can choose two months out of the 12 in

=  66 different ways, the total number of favorable outcomes is
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66 • (2® — 2) =  66 • 62. It follows from this that the required probability is 
(66 -62)/126 ^  0.00137.

69. The first passenger can choose any of the three cars. The second 
passenger can then likewise choose any of the three cars, so that the total 
number of ways two passengers can choose which cars to sit in is 3 • 3 =  
32. Similarly, the number of ways nine passengers can choose which cars 
to sit in is 39. There are therefore 39 equally likely possible outcomes. Let 
us now determine the number of favorable outcomes for parts a, b, and c.

69a. The three passengers who sit in the first car can be chosen from the 
(9\ 9 - 8 - 7

nine passengers in 1 2  3 ^ ^ erent ways- The number of ways of
arranging the remaining six passengers in the other two cars is 2fl (by the 
same argument we used in showing that the nine passengers could be

arranged in three cars in 39 ways). Combining each of the ways of

choosing which three passengers will sit in the first car with each of the 2®
ways of seating the other six passengers in the remaining two cars, we get

(9\ 9 • 8 • 7 • 2®
I • 2® = -------------- favorable outcomes. It follows from this

3/ 1 - 2 - 3
that the required probability is

9 ■ 8 • 7 • 26 
1 • 2 • 3 • 36

1792
6561

0.273.

69b. The number of ways of choosing which three passengers will sit in 
the first car is the number of combinations of nine objects three at a time, 

/9 \ 9 - 8 - 7
which equals I I =  -—-—- . (See solution to part a.) Any three of

the six remaining passengers can take seats in the second car; one can
/ 6\ 6 - 5 - 4

choose these three passengers in I I =  — -—- ways. Combining each of

0 \3 / 1*2*3
ways of choosing which three passengers will sit in the first car

/  6\
with each of the I I ways of choosing which three of the other passengers

'9 \ /6 \ 9 • 8 • 7 • 6 • 4will sit in the second car, we obtain a total of 
9!

favorable outcomes.

Thus the required probability is

(1 • 2 • 3)2

9! _  560_
(3 !)339 ”  6561

0.085.
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69c. The car in which two passengers sit can be chosen in three ways and 

the passengers who sit there can be chosen in ways. Then the car in 

which three passengers sit can be chosen in two ways, and the passengers 

who sit there can be chosen in ways. The other passengers must 

then sit in the remaining car. Hence there are 3 • 2 | ^ ) (1 ) =  75602) \3
favorable outcomes, and the required probability is 7560/39 ^  0.384. 
(This probability is 4£ times as great as that of the arrangement in part b.)

70. The experiment considered in this problem consists of dividing the 
ten cards into two sets A and B of five cards each. The total number of

ways of choosing the set A is 10 =  252, and so there are 252 equally

likely possible outcomes. We must now determine the number of favorable 
outcomes for parts a, b, and c.

70a. The number of outcomes in which the 9 and 10 are both in A is equal 
to the number of ways of choosing the three remaining cards of A from

among the 1, 2, . . . , 8. This can be done in =  56 ways.

By the same reasoning there are 56 outcomes in which the 9 and 10 are 
both in B. Therefore the required probability is (56 4- 56)/252 =  4/9.

This problem can also be solved without computing the total number of 
outcomes. To do this, note that whichever hand the 10 is in, the 9 can either 
be one o f the four remaining cards in that hand or one o f the five cards in the 
other hand, thus giving four favorable and five unfavorable outcomes.

70b. The number of outcomes in which the 8, 9, and 10 are all in hand A 
is equal to the number of ways of choosing the two remaining cards of A

from among the 1,2, . . . , 7. This can be done in = 2 1  ways.

Similarly there are 21 outcomes with the 8, 9, and 10 in hand B, so that 
the required probability is

21 +  21 _  1̂
252 “  6 '

70c. There are =  6 ways of deciding which two of the top four cards

are to be in hand A. Once this is determined the three remaining cards of A

must be chosen from among the 1,2,. . . , 6. This can be done in j  =  20

ways. Therefore there are 6 • 20 =  120 favorable outcomes, and the 
desired probability is 120/252 =  10/21.



148 S O L U T I O N S

71. We will compute the two probabilities in the problem and then 
compare them.

1. The total number of possible outcomes in a set of four games is 
24 =  16, since each game has two possible outcomes. These are all equally 
likely, since A and B are equally strong. The favorable outcomes are 
those in which B wins only one game out of the four; this can happen in 
four ways, and therefore the first probability is 4/16 =  1/4.

2. In a set of eight games there are 28 =  256 equally likely possible 
outcomes. The favorable outcomes are those in which B wins only three

/8 \of the games. The three he wins can be chosen in I I = 5 6  ways. Thus 
the second probability is 56/256 =  7/32. ' '

Since 7/32 <  1/4, A is more likely to win three games out of four 
than to win five games out of eight.2

72a. We consider here an experiment which consists of drawing k balls 
from a box containing n +  m balls. Since k balls can be selected from the

n +  m in ^  ^  different ways, there are j  equally likely

possible outcomes to our experiment. The favorable ones are those 
in which exactly r of the k balls drawn are white, and consequently, k — r 
of them black. It is clear that this is possible only when r k, r sS n, and 
k — r ^  m; when these conditions do not all hold, there are no favorable 
outcomes at all and the desired probability is zero. Assuming that the 
indicated inequalities are satisfied, we obtain all the favorable outcomes

by combining each of the y I ways of drawing r balls from the n white
/ Ml \ ' '

balls with the [k — r
Thus the number of favorable outcomes is

(n\ I  tn \ / fn +  m
i J U - r ] /  kprobability is

ways of drawing k — r balls from the m black balls.

, ., and the required
rv t“ f

72b. Let k ^  n and k ^  m. When k balls are drawn from a box containing 
n white balls and m black ones, the number of white balls drawn can be 
0, 1,2, . . . , or k. According to part a, the probability that this number

will be 0 is (q) ^  > the probability that it will be 1 is

2 This answer seems at first paradoxical, since 3/4 >  5/8, which would seem to 
imply that it is harder to win three out of four games from an equally strong opponent 
than to win five games out of eight. The point is that one must distinguish between the 
probability of winning exactly five games out of eight, which is what the problem 
deals with, and the probability of winning at least live games out of eight. It is in 
fact easier to win at least five games out of eight from an equally strong opponent than 
to win at least three games out of four.
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m
k -  1

n + m\' probability is that

that it will be k.

m \  j  j n  - f  m 
k - 2 )

it will be 2 , ,  and the probability is j  j  ^

But the sum of these probabilities is 1, since exactly one of the above 
events must occur. Thus

'n\ im
yO/U
n -\- m 

k

m
k -  1

n +  m 
k

' n \ I m
a ) \ k  -  2

n -j- m 
k

and consequently

n w in in
o ) \ k ) +  l i i U  - 1

n \ / m
2 / U  — 2

n -j- m 
k

1,

n\ I m \ _  In m 
k \ 0  = {  k

Remark. The method used in problem 72b is closely related to the geo
metric method discussed in problem 61. In both cases we divide some set of 
objects (the shortest paths in the geometric method and possible outcomes to 
the experiment in the solution o f problem 72b), the number o f whose elements is 
to be computed, into mutually disjoint subsets, and then equate the number o f  
elements in the entire set to the sum of the numbers o f elements in the subsets. 
But the method of problem 72b is more general and can be applied to derive 
many relations which are essentially unobtainable by the geometric method o f 
problem 61 (see, for example, problem 73).

73a. Our problem amounts to determining the probability that when the 
man tries to take an (n -j- l)st match from box A, exactly n — k matches 
have been taken from the box B. In this form, the problem is not changed 
if we increase the number of matches in the two boxes; in fact we can 
suppose that there are an infinite number of matches in each box. The 
advantage of this is that now we can consider the experiment of choosing 
n +  (« — k) = 2n — k matches, selecting the box from which each is 
taken at random (as the 2n — k  -f- 1st match is assumed to come from A, 
its selection is not part of the experiment). There are 22n~k equally likely 
outcomes for this experiment. The favorable outcomes are those in which 
n matches are chosen from A and the remaining n — k from B. This can

j  ways, and so the desired probability is

1 I2n — k
22n~k \ n

be done in 2n — k

73b. At the moment when the man in part a discovers that he has picked 
an empty box, the number of matches in the other box can be anything
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from 0 to n. The sum of the probabilities of these events is 1, and 
therefore

J_  2n
22n I n

1 lln  -  1 
22n—1 \

+
1 (2n — 2

)2n—2 2 \n)
Multiplying by 22n, we get

74. ivryt solution. Let us define a sequence {a^ a2, . . .  , a50} by putting 
an =  1 if A hits a duck on his n-th shot and an =  0 otherwise. Similarly 
we define {b±, b2, . . . ,  b5 J  by putting bn =  1 if B hits a duck on his n-th 
shot and 0 otherwise. The combined sequence S = {ax, a2, . . . , <750, 
bu b2, . . . , 651} then corrlpletely describes the outcome of the hunt. Since 
the probability of hitting a duck on any given shot is 1/2 for both A and B, 
there are 2101 equally likely possible outcomes {al f . . . , a50, b1} . . . , b51}. 
For any given sequence, A’s total number of hits is ax +  a2 +  • • • +  a60 
and B’s total is bx b2 +  • • • b51. Therefore an outcome is favorable
if and only if

ai +  a2 4- ' ' ‘ “h a5o <  b1 +  b2 -(- • • • +  b5i.
We have to determine the number of sequences with this property.

To every sequence S  =  {<71; a2, , a50, blf b2, . . .  , 651} we can as
sociate the sequence S' =  {1 — ax, 1 — a2, . . . , 1 — a50, 1 — bu 1 — b2, 
. . . , 1 — b51} obtained by interchanging the zeros and ones in S. We will 
now show that S  is favorable if and only if S' is unfavorable. If S  is 
favorable, then

and so
^ 1  +  ^ 2  +  ' ‘ ‘ +  ^ 5 0  <  ^ 1  +  ^ 2  +  ' ' ‘ +  ^ 51> 

al a2 ' a50 ^  1̂ b2 b$i,
since when an inequality is multiplied by —1, its sense is reversed. Adding 
51 to both sides, we obtain

(1  —  al) +  (1  ~  a2) +  ' ‘ ' +  (1  —  f l5o) +  1

>  (1 -  bx) +  (1 -  b2) +  • • • +  (1 -  b51).
But if x and y  are integers, then jc +  1 >  y  is equivalent to jc ^  y. 
Therefore

(1 — ai) +  0  — ^2) +  ‘ ‘ ‘ +  (1 — 5̂0)
^  (1  —  ^ 1)  +  ( 1  —  ^ 2)  +  ' ' ' +  ( 1  ~  ^ 5 l ) -

This shows that S' is unfavorable. The reasoning is reversible, and so we 
have established a one-to-one correspondence between favorable and 
unfavorable outcomes. There are therefore 2100 of each, and the desired 
probability is 1/2.
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Note that we do not actually need to know the total number of 
outcomes to solve this problem. For once we show that F, the number of 
favorable outcomes, is equal to U, the number of unfavorable outcomes, 
the required probability is F/(F +  U) = F/(F +  F) =  1/2.

Second solution. Let us imagine that the hunt takes place in two 
stages: in the first stage A and B each shoot at 50 ducks, and in the second 
stage B shoots at one duck. There are then two ways in which B can hit 
more ducks than A :

(1) by hitting more ducks than A in the first stage (the outcome of 
the second stage is then irrelevant);

(2) by hitting the same number of ducks as A in the first stage and 
then hitting the duck in the second stage.

Let p  be the probability that (1) occurs, i.e., that B hits more ducks 
than A in the first stage. By symmetry p is also the probability that A hits 
more ducks than B in the first stage (indeed, both A and B have the same 
accuracy and the same number of shots in the first stage). Therefore the 
probability of a tie at the end of the first stage is 1 — 2p. This implies that 
the probability of (2) is (1  — 2p)\, for the two stages are independent of 
each other (see p. 22). Since (1) and (2) are mutually exclusive, the 
probability that one or the other occurs is p +  (1 -2 p )\  =  1/2.

Remark. The same reasoning applies to a hunt in which A shoots at n 
ducks and B shoots at n +  1 ducks. The probability that B bags more ducks 
than A is always 1 /2.

75a. The experiment we are discussing in this problem deals with two 
hunters simultaneously shooting at a fox. The frequency of hits and 
misses by each of the hunters of course does not depend on the result of 
the simultaneous shot by the other : if they shoot simultaneously at a fox 
many times, the first hunter will hit the fox with an average of one shot 
out of three, and the second hunter will hit the fox just as often when the 
first hunter is successful as when he is not. In computing the probability, 
we can suppose that instead of shooting, each hunter independently draws 
a slip of paper from a hat containing three slips, one marked “Hit” and 
the other two marked “Miss.”

Call the “Hit” slip H  and the two “Miss” slips Mx and M 2; combining 
each of the three possible outcomes for the first hunter’s drawing with 
each of the three possible outcomes for the second hunter’s drawing, we 
obtain the following nine possibilities for our experiment:

{Mi Mi) (Mt M2) (M, H)

CMl M l) (M2M2,) (M2H)

(H M,)  (.H M 2) {H H).
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Of these nine possibilities, the favorable ones are those in which at least 
one of the hunters draws the “Hit” slip, that is, the five outcomes in 
the bottom row and rightmost column of the above table. Thus the 
probability that at least one of the hunters hits the fox is 5/9.

75b. Combining each of the nine possible outcomes of the preceding 
problem with each of the three possible outcomes of a third hunter’s 
drawing one of the slips, we obtain 27 equally likely possible outcomes. 
Of these 27 possible outcomes, one of the first two hunters draws the Hit 
slip in 3 • 5 =  15 cases (remember that in the previous part the Hit slip 
was drawn in five cases out of nine); in the remaining 12 cases the first 
two people draw Miss slips in each case and the third person draws the 
Hit slip in one-third of the cases (that is, in four cases). Thus there are a 
total of 15 +  4 =  19 favorable outcomes. Hence the probability that at 
least one of the three hunters will hit the fox is 19/27.

75c. In the case of n hunters firing simultaneously, we obtain as in parts a 
and b 3n equally likely possible outcomes. A direct calculation of the 
number F of favorable outcomes can be made (using the principle of 
inclusion and exclusion), but is somewhat complicated. It is simpler to 
compute the number U of unfavorable outcomes, that is, those in which 
all n hunters miss. We then have F =  3" — U. To find U, it is again 
convenient to replace the actual shooting by drawing slips as in parts a 
and b.

To create an unfavorable outcome each hunter must draw either 
or M2. Thus there are two possibilities for each of the n hunters, and so 
U = 2n. Therefore F =  3n — 2", and the required probability is

(3n -  2n)/3n =  1 -  (2/3)n.

Remark: This problem can also be solved by working directly with prob
abilities instead of computing F or U. For if p is the probability that at least 
one hunter scores a hit, then q = 1 — p is the probability that they all miss. 
The probability that any one hunter misses is 2/3; therefore by the remarks on 
independent events made in the introduction to this section, q = (2/3)", and 
p = 1 — (2/3)". This solution is substantially the same as that given above.

76. Let us first compute the probability of the second or third shot hitting 
the fox. The second time the hunter would be shooting from a distance 
of 150 yards and the third time from a distance of 200 yards. Since by 
hypothesis the probability of a hit is inversely proportional to the square 
of the distance, and is 1/2 when the distance is 100 yards, the probability 
of a hit on the second shot is (1/2)(100/150)2 =  2/9, and on the third shot 
it is (1 /2)(100/200)2 =  1/8.

From these calculations we see that the probability of missing with 
the first shot is 1 — 1/2 =  1/2, that of missing with the second shot is



VI. Problems on computing probabilities 153

1 — 2/9 =  7/9, and that of missing with the third shot is 1 — 1/8 =  7/8. 
Therefore the probability of missing with all three shots is 1/2 • 7/9 • 7/8 =  
49/144, and so the solution to the problem is 1 — 49/144 =  95/144 ph 0.66.

77. We will solve the problem in the formulation given in the remark. 
Let us suppose, however, that instead of being given a blank sheet of 
paper, A is given a slip already marked with a plus. He can then either 
leave it alone or change it to a minus, and the probability that he leaves it 
alone is known to be 1/3.

The experiment under discussion consists of passing the paper from 
A to B to C to D and observing the final result. Let X  be the event that 
A left the plus sign and let Y be the event that the final result was a plus 
sign. We have to find Pr{X | Y}, the conditional probability of X  given Y. 
This quantity is equal to Pr{X n  Y}jPr{ Y} (see the introduction to this 
section). To calculate Pr{ Y} observe that in order for the final sign to be 
plus it must have changed an even number of times (since it started out 
as a plus). Therefore it changed either 0, 2, or 4 times. The probability 
that it changed 0 times is (1 /3)4 =  1/81, and the probability that it changed 
4 times is (2/3)4 =  16/81. To calculate the probability that it changed

twice, note that there are =  6 ways to pick the two people who

changed it. For each choice of these people, the probability that they 
changed it and the other two left it alone is (2/3)2(l/3)2 =  4/81. Thus 
the probability of exactly two changes is 6-4/81 =24/81. Therefore 
Pr{Y) =  1/81 +  24/81 +  16/81 =  41/81.

For the event X  n  Y to occur there must have been an even number 
of changes, but A did not make one of them. Hence there were either 0 
or 2 changes. As before, the probability of 0 changes is (1/3)4 =  1/81, but

now the. probability of 2 changes is only ^ j(2 /3 )2(\/3)2 =  12/81, since the

people making the changes can only be chosen in = 3  ways. Therefore

Remark. The above problem can be generalized as follows. Let n people 
A lt . . . , A n be given. A slip marked with a plus sign is given to A 1, who passes 
it to A 2, who passes it to A 3, etc.; finally A n passes it to a judge. At the ;-th 
stage A { has the option of changing the sign before passing it on; assume that 
each Ai exercises this option with probability p,  where 0  <  p  <  1 .

N ow  suppose that the judge observes a plus sign at the end o f the process. 
What is the probability that A x left the sign unchanged? (We leave it to the 
reader to formulate this as a problem o f n liars.)

and so
Pr{X n  Y) =  1/81 +  12/81 =  13/81, 

Pr{X | Y} = (13/81 )/(41/81) =  13/41.
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For convenience o f notation, put q =  1 — p ;  thus q is the probability that 
A t does not change the sign.

Let X b e  the event that A 1 does not change the sign, and let Y  be the event 
that the final sign is a plus. We must calculate P r{X  | F} =  P r { X  n  Y}jP r{Y }.

To find P r{Y } ,  note that in order for the final sign to be plus, it must 
have changed an even number 2k  o f times, where 0 SS 2k  sS n. Let us cal
culate the probability that the sign is changed exactly 2k  times. There are

ways to choose which people make the changes. Suppose these people

have been chosen; let us say they are A v  . . . , A2k for definiteness. The 
probability that they will all change the sign, but that the remaining people

2 k  n  - 2 k

Azk+1, • • • , A n will leave it alone, is p  • p  ■ • ■ • p  q • q • ■ ■ • q =  p 2kqn~2k. The 
same reasoning applies to whatever group o f 2k  people make the changes, so

the desired probability is I I p 2kqn~2k. Therefore

Pr{ Y) = + pY -* + • • • ,

where the series breaks off as soon as 2k  becomes greater than n. To evaluate 
this in closed form, apply the binomial theorem to {q +  p )n and (q — p ) n. 
We get

( q  +  p ) n qn + T 'p +

(q -  p )n = qn xp qn~2p 2

qn 3 p 3  _|_
+  ( - 1)"! . . \ p n

Adding these two equations and then dividing by 2, we see that

{g +  p )n +  (g -  p )n 
2 t  + u  q p + \ a q p +

=  Pr{ Y}.

Since q +  p  =  1, this can be simplified to give Pr{ Y}  =  [1 +  (1 — 2p)n]/2.
N ext we must find P r {X  t~\ Y}. In order for X  o  Y  to occur, an even 

number o f people must change the sign, but A 1 must not be one of them. So if

exactly 2k  people change the sign, they can be chosen in only  ̂ ^   ̂ ways.

Once the 2k  people are chosen, the probability that they will change the 
sign while the other n — 2k  people will leave it alone is stillp 2kqn~2k. Therefore

P r { X n Y } = ln Q V + ( %  l ) p Y 2 + | .p Y  4 + • • •

=  q pY  6
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The expression in the braces can be evaluated as above, and we get

1 + (1
P r{X  n  Y} = q -------—

2p)n~l

Finally P r{X  | Y}
P r{X  n  T} 

P r{Y ) (1
1 + (1 -  2pY~' 

P) 1 + (1 -  2pY •

The reasoning used in this solution can be applied to a great many problems 
in probability theory, in particular in the theory o f Markov chains.3

78a. The upper ends of the six blades of grass can be joined in pairs in 
5 -3 -1  =  15 different ways (the first end can be tied to any of the other 
five upper ends; then the first loose upper end can be tied to any of the 
other three loose ends; then the two remaining loose ends must be tied 
together). There are likewise 15 different ways of joining the lower ends. 
Since the way the lower ends are joined is independent of the way the 
upper ends are joined there are a total of 15 • 15 =  225 equally likely 
possible outcomes to the experiment.

Let us now compute the number of favorable outcomes. Let the 
upper ends be connected in any of the 15 possible ways; let, say, the end of 
the first blade be tied to the end of the second blade, the third to the fourth, 
and the fifth to the sixth. In order that a ring be obtained, it is necessary 
that the lower end of the first blade be tied to the lower end of the third, 
fourth, fifth, or sixth blade; we thus have four possibilities for the lower 
end of the first blade. Further, if the lower end of the first blade is joined 
to that of the third blade, then the lower end of the second blade will have 
to be joined to that of either the fifth or the sixth blade; here we have only 
two possibilities. After this is done we are left with only two loose ends, 
which must be joined to each other. Combining all possibilities, we see 
that for each of the 15 ways of joining the upper ends there are exactly 
4 -2  =  8 ways of joining the lower ends which lead to favorable outcomes 
to the experiment. It follows from this that the total number of favorable 
outcomes is 15 • 8 =  120.

Thus the probability to be computed is (15 • 8)/(15 • 15) =  8/15
0.53.

78b. By the same argument as in the solution to part a, we find that when 
there are 2n blades of grass, the total number of possible outcomes to the 
experiment is [(2n — 1)(2n — 3)(2n — 5) • • • l]2, and the number of 
favorable outcomes is

[(2n -  l)(2/i -  3)(2n -  5) • • • 1][(2n -  2)(2n -  4) • • • 2],

3 Sec J. G. Kcmcny and J. L. Snell, Finite Markov Chains, Princeton, 1960.
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Thus the required probability is

_  (2n -  2)(2n -  4) ■ • • 2 =  2n -  2 2n -  4 2
“  (2/j -  l)(2/i -  3) • ■ ■ 3 ■ 1 ~  2zi -  1 2n -  3 3 '

Remark. The apparently simple answer to problem 78b becomes very 
inconvenient for large values o f n, since in that case a large number o f fractions 
must be multiplied. However, by using Stirling’s formula4

n ! — nne~n V  2vn

one can obtain a simple approximation to this probability which is useful for 
large n. For noting that (2n — 2)(2n — 4) • • • 2 — 2n~1(n — 1) • (n — 2) • • ■ 1 =  
2 «-i(«  _  1)!, and multiplying the numerator and denominator of the answer to 
problem 78b by this expression, we find that

[2n~ \n  -  l ) ! ] 2 [2 n_1 V 2n(n -  1 )(/i -  l )» - ie-m -D ]2

Pn ~  (2 n -  1)(2 n -  2 )! (2 n -  l ) ^ 2 n  • 2 (n -  1) [2 (n -  l ) 2m-i)e- 2(n-D]

V 77{n — 1) ^  tt
—— ■ /-«*■/ -----------------

2/1 — 1 2V/1
since for large n

Vn -  1
2n -  1

1 -

2„ U - -

1
2/i 2VV

Here as usual denotes the ratio 3.14 • • • o f  the circumference o f a circle to its 
diameter. The relative error in the approximation

Pn 2 v n
decreases as n increases.

79a. Let us compute the total number of (equally likely) possible outcomes 
to the experiment considered in the hypothesis of the problem. The first
person can draw any of  ̂^ j  =  2n(2n^— 1) pajrs ^a]]s xhen the

(2/7 2\^ I =  (2/i — 2){2n — 3)/2 pairs

which can be formed from the remaining 2n — 2 balls. The third can 
I2n — 4\draw any of I I =  (2n — 4)(2n — 5)/2 pairs, etc., up to the next-
\ 1 ' /4\

to-last person, who can draw any of I ^ I = 6  pairs; the last person has

no choice but to draw the two remaining balls. Combining each of the
4 See, for example, R. Courant, Differential and Integral Calculus, Interscience, 

New York, 1937, p. 361-364.
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2n\.  I possible outcomes to the drawing of the first pair of balls with
^ /2/z 2\

each of the I I corresponding possible outcomes for the drawing

of the second pair, then combining each of the ^  ^ possibilities

(In — 4\thus obtained for the first two pairs of balls with the I 1 possible

outcomes for the drawing of the third pair of balls, etc., we obtain 
a total of

(2T 7 2) - m
_  2n(2n -  1) _ (2n -  2)(2n -  3) > _ 4j_3 2_J. _  (2k)!
~  2 2 2 2 ~  2n

equally likely possible outcomes to the experiment. It now remains only 
to compute how many of these outcomes are favorable.

The favorable outcomes are those in which each person draws one 
white ball and one black one. The first person can draw any of the n 
white balls and any of the n black balls, that is, he can draw any of n2 
pairs which consist of one white ball and one black one. Then the second 
person can pick any of the (n — l)2 remaining such pairs (after the first 
person has drawn one white ball and one black one, there are n — 1 white 
balls and n — 1 black ones left), then the third person can choose any of 
(n — 2)2 such pairs, . . . , the next-to-last any of 22 =  4 pairs, and the last 
person must pick the one remaining pair. Combining all these possi
bilities, we obtain a total of

k2(k — 1 )2(k — 2)2 • • • 22 • l2 =  (k!)2 

favorable outcomes. Consequently the required probability is

(n \f  2"(k!)2
Pn ~  (2n)\ ~  (2k)!

2n

Remark. The seemingly simple answer obtained here turns out to be 
very inconvenient if one has to compute the probability for large values of n 
(say, for n equal to 8 or more).

As in the remark to problem 78 we can use Stirling’s formula

k! ~  V2nnnne~Jn
to estimate pn. We get

2”(k!)2 2”(2tm)n2ne-2n V™
Pn (2k)! V2tt • 2n(2n)2ne~2n 2"
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79b. There are here a total of (2«)!/2n equally likely possible outcomes 
(the same as in part a; see the solution to that problem). Thus we have 
only to find the number of favorable outcomes.

First of all, it is quite clear that for odd n the number of favorable 
outcomes (and consequently, also the required probabilitypn) equals zero: 
if the total number of white balls is odd, at least one of the people must 
draw one white ball and one black ball. Hence we have only to consider 
the case of even n — 2k\ the total number of possible outcomes is then 
equal to (4k)!/22fc.

Let us now compute the number of favorable outcomes in which 
k specific people of the 2k participants each draw a pair of white 
balls (and consequently, the other k  each draw a pair of black balls). The 
k  people can each draw a pair of white balls from the 2k white balls in the 
jar in (2k)!/2fc different ways (this number is obtained by replacing n by k 
in the expression for the total number of possible outcomes). The 
remaining k  people can likewise each pick a pair of black balls in (2k)\j2k 
different ways. Combining these possibilities, we conclude that the number 
of outcomes in which the given k  people each draw a pair of white balls 
is [(2k)\]2/22k. But the k  people who pick the white balls can be

chosen from the total of 2k people in =  (2k)!/(k!)2 different ways.

The total number of favorable outcomes is therefore

(2k)!2 (2k)! _  (2k)!3 
22fc (k!)2 “  22fc(k!)2 '

Consequently, the required probability is

=  (2k)!3 / (4k)!  (2k)!3
P2k 22fc(k!)2/  22k (4k)!(k!)2 '

Remark. As in the case of part a, for large values of k it is convenient to 
approximate the answer obtained by making use of Stirling’s formula:

[(2 k) ! ] 3 (In  • 2 k )3'2(2k)6V 6fc
Pik = -----------  ~  —. ------------------------

(4k )! (k ! )2 V l n  ■ 4k(4k)4,ce~4,c(27rk)k2/l‘<?~2fc

(2nk)*l2 • 2 3/ 2 • 26kk eke~6k V 2
=  (2 trk) 3/2 • 2  • 4ikk Gke~6k = 2 P '

80a. First solution. The experiment under discussion in this problem 
consists of writing the m addresses on the m envelopes. Any of the m 
addresses can be written on the first envelope; then any of the remaining 
m — 1 addresses can be written on the second envelope; then any of the 
remaining m — 2 addresses on the third envelope, etc. Therefore the 
experiment has a total of m{m — l)(/rz — 2) • • • 1 = m\ equally likely
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possible outcomes. We now have to compute the number of favorable 
outcomes, i.e. outcomes where at least one envelope is correctly addressed.

We will do this by applying the principle of inclusion and exclusion 
(sec problem 12). Let A1 be the set of all outcomes in which the first letter 
is correctly addressed, A2 the set of outcomes where the second letter is 
correctly addressed, etc. Then A1 U  A2 U  • • • U  Am is the set of favorable 
outcomes, so our problem is to compute #{A X U A2 U ■ • • U Am). 
To do this we will need to know the quantities #(/!,), #{Ai n  Aj), 
# (A t n  A] n  Alc), etc. Now #(A t) = (m — 1)!, since when the /-th en
velope is correctly addressed, there are (m — 1)! ways to address the re
maining m — 1 envelopes. Similarly #{At n  Af) = (m — 2)!, since after 
the /'-th andy-th envelopes arc correctly addressed, theremaining m — 2 en
velopes can be addressed in (m — 2)! ways. Likewise #(A t O A} O Ak) =  
(m — 3)!, etc. In the expression on the right-hand side of the principle of

inclusion and exclusion there are m terms of the form #{A^), \ ™ | terms
( I 7 l \  ' ̂ 1 terms of the form #(A t n  A} n  Ah), etc.

J i i u u u i i .  w i .  n a v v  '

#{Ai U  A2 U  • • • U  Am) =  m(m -  1)1 -  - (m -  2)! +  (m -  3)!m m

+  ( - l ) .171 —  1 / m  j |
m

This expression can be simplified by noting that y \ { m  — r) \ =

ml/rl. We thus obtain

m !
2 !

... m '
U A2 U • • • U A J  = m \ -  —  + —  -

m !

=  m ! 1 -  — +  — 2! 3!
• • • + ( - D m—1

m !

The required probability is obtained by dividing this number by the 
total number of outcomes, which we saw was m\ Thus the solution is 
1 -  1/2! +  1/3! ----------- (— \)m~ljm\.

Second solution. As in the problem with the fox (problem 75c), the 
required probability can also be found if we compute not the total number 
of favorable outcomes, but the total number of unfavorable outcomes, 
that is, the outcomes in which none of the envelopes is addressed correctly. 
Denote the number of such outcomes by An. Number the envelopes in 
any way, using the numbers 1,2, . . . , n; we will call the correct address 
for the £-th envelope the £-th address.

In the case of an unfavorable outcome, the possible addresses for the 
first envelope arc the 2nd, 3rd, 4th, . . . , and the u-th addresses. Consider
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the unfavorable outcomes in which the 2nd address is written on the first 
envelope. Then either the 1st address or one of the 3rd through n-th 
addresses can be written on the 2nd envelope. Let us consider these two 
eases separately.

if the 1st address is written on the 2nd envelope, then in order that 
the outeome be unfavorable, it is necessary and sufficient that none of the 
remaining n — 2 envelopes (the 3rd through /7-th) be addressed corrcetly. 
The number of sueh outcomes is equal to the number of unfavorable ways 
of addressing n — 2 envelopes, that is An_2.

Now consider the outcomes in which an address other than the first 
is written on the second envelope. The number of sueh outcomes equals 
the number of ways in which the 1st, 3rd, 4th, . . . , and /7-th addresses ean 
be assigned to the 2nd, 3rd, 4th, . . . , and /7-th envelopes in sueh a way 
that the 2nd envelope is not given the first address, the 3rd envelope is not 
given the 3rd address, the 4th envelope is not given the 4th address, . . . , 
and the /7-th envelope is not given the /7-th address. This number equals 
the number of unfavorable outcomes for the case of n — 1 envelopes, that 
is, An_x (the faet that it is here the 1st address and not the 2nd whieh must 
not be written on the 2nd envelope is completely immaterial).

Thus the total number of unfavorable outcomes in which the 2nd 
address is written on the 1st envelope is An_x +  An_2. We obtain exactly 
the same expression for the numbers of unfavorable outcomes in whieh 
the first envelope bears the 3rd address, or the 4th adrdess, etc. Sinee 
in the unfavorable eases any of a total of n — 1 different addresses can 
be written on the first envelope, we obtain the formula

Consider now the probability //„ that none of the n envelopes is 
addressed correetly. Sinee in our ease there arc a total of /;! equally likely 
possible outcomes (see the beginning of the first solution) and the number 
of outcomes in whieh none of the envelopes is addressed correetly is An, 
we have

The formula (I) now gives

A n =  (11 — 0 ( ^ n - l  +  4 n_2). ( 1)

An ._ _ j A n—1 j A n—2
n ! L n ! n ! _

, n  1 A ■■ '= (n -  1)

Pn P n—1 Pn—2> Pn P n— 1 (.Pn—1 Pn—2)'11 n

that is,
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For n =  1 there is only one possible outcome, a correct address, 
so that A1 =  0 and p, =  0; for n — 2 there arc two equally likely out
comes, one of them favorable and one unfavorable, so that p.z =  1/2. 
Using the formula obtained, we can compute successively

P3 — Pi  ̂ -Pi) — 2

Pi =  Pi  ”  (Ps Pi) =  ~

=  1 ___ L  +  — !—
2 2 -3  2 • 3 • 4 ’

1 . 1 - 1
3 2 “  2
J ___
2- 3  4

1
2 • 3 ’

Ps —  Pi  ̂ (Pi Pa) —  ^ 2 • 3
1

2 - 3 - 4
1 1
5 2 - 3 - 4

2 2 • 3
+

1
2 - 3 - 4

1
2 • 3 • 4 • 5 ’

Pn Pn—1 (Pn—1 Pn—i)n
_ 1  1 . ( - I ) " '1 1 (-I)""1

2 2 ■ 3 ' • 3 • 4 • • ■ (h — 1) n2 - 3- 4 - • -(n -  1)
=  1  _  i  , 1  _  . . . , ( - 1 ) ”"1 , ( - 1 ) ”

2! 3 1 ^ 4 !  (n -  1)! ^  n!
Since the total number of favorable outcomes is n\ — An, the proba

bility sought in the problem (namely, that of at least one of the envelopes 
being addressed correctly) is

n\ -  An = 1 _ I  +  l _ i , ____ H T
nl 2! 3! 4! n!

80b. For large n, the sum

\_
2 ! 3! n !

differs by less than 1 /(« +  1)! from the infinite series

since
2! 3! 4! 5!

o <  ( — -—
\(»i +  I)!

1
(/> +  2j!

( » +  1)!

+ M -
f n  +  3)!

1
(n +  4)!

+  • • •

— !-------------- H -(n +  2)1 (/i +  3)!/
I

(n +  1)! ‘
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The sum of this infinite series is l/e, where e =  2.71828182 • • • is the limit of 
the expression (1 +  1 /«)n as n —> oo (e is the base of the system of natural 
logarithms).5 Thus the probability found in this problem is close to 
1 — l/e m  0.63212056 (that is, somewhat smaller than 2/3). Note that 
even for n =  10 our probability differs from 1 — 1 je only in the eighth and 
subsequent decimal places, since 1/11! ^  0.00000002.
81a. The experiment under discussion in this problem consists of each of 
the p  passengers choosing at random (independently of the others) one 
of the m carriages of the train. One passenger has m possibilities for the 
choice of his carriage, two passengers have m2 possibilities, . . . , and p 
passengers have mv possibilities. Thus there are a total of mp equally 
likely possible outcomes to the experiment. We will now compute the 
number of unfavorable outcomes, i.e. outcomes in which at least one 
carriage is empty. Let Ai be the set of outcomes in which the /-th carriage 
is empty; then Ax U A2 U • • • U Am is the set of unfavorable outcomes. 
We can compute #(A X U A2 U • • • U Am) by the principle of inclusion 
and exclusion provided we know # (^ t), #{A t n  A3), #{A t n  Ai n  Ak), 
etc. Now #(Tj) = (m — l)p, since when the /-th carriage is required to be 
empty, the/? passengers can be put into the remaining m — 1 carriages in 
(m — l)p ways. Similarly #(T,. n  T3) =  (m — 2)p, for when the /-th and 
/-th carriages are empty, there are m — 2 carriages remaining in which to 
put the/? passengers. By the same reasoning # (A { n  Aj n  Ak) — (m — 3)p 
etc. The principle of inclusion and exclusion therefore gives

#{AX U A2 U • • • U A J

= m(m -  1 y -  ( '” )(m -  2)* + ( 3 ) ^  -  3)* -  • • • +  ( - i r - ^ j o L

Subtracting this from mv, the total number of outcomes, we see that 
the number of favorable outcomes is

mv -  # (A 1 U • • • U A J

=  «>’ -  ( i ) ( * - ' ) ’ + ( " ) ( » - ! )’ - " '  +  (- i r 1( „ ! 1) 1’
Dividing by mv we obtain the desired probability, namely

mT- ~iy + { l + J ? ’
mv

6 See for example R. Courant, op. cit., p. 326.
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81b. First solution. The experiment is the same as in part a and therefore 
has mv equally likely possible outcomes. But now a favorable outcome is 
one in which exactly r carriages are occupied. For a given set of r carriages 
we know from part a that the p  passengers can be put into them so that 
none is empty in

r * -  ( r -  i r +  ;  ( r - 2 ) ’ -  •■• +  ( - ! ) .7 — 1

The required probability is therefore

+ ( - l ) r"1l ' .IFr
r —

r0y - ( T r - o * + + ( - i r ‘ l  r . i i ’
V - i

(
Wl\1 ways.

m
Second solution. Part b can also be solved independently of part a. 

Let us denote by f(p ,r) the number of ways in which p  passengers can be 
arranged in m carriages so that exactly r carriages are occupied (we 
consider the number m to be fixed). Now consider f ( p  1, r). From 
each of the f(p,r) arrangements of p passengers in which r carriages are 
occupied, we can obtain r such arrangements of p  +  1 passengers, since 
the (p +  l)st passenger can sit in any of the r carriages already occupied. 
Also from each of the f(p , r — 1) arrangements of p passengers in which 
r — 1 carriages are occupied, we can obtain m — r +  1 arrangements of 
p +  1 passengers for which r carriages are occupied. This is because the 
(p +  l)st passenger can be seated in any of the m — (r — 1) =  m — r +  1 
hitherto unoccupied carriages. This accounts for all arrangements of 
p -f 1 passengers, and so f (p  +  1, r) = rf(p,r) +  (m — r y  1 )f(p, r — 1).

To eliminate m from this equation we divide both sides by

m(m — 1 ){m — 2) • • • (m — r +  1),
getting

______ f i p - ’r 1, r)______  =  r _________ f(p,r)________
m(m — 1) ■ • • (m — r +  1) m(m — 1) ■ • • (m — r +  1)

j________f(p , r ~  1)______
m(m — 1) • • • (in — r +  2)

Next we introduce the notation

( 1)

_____________ f(p,r)_____________

m(m — !)••■ (in — r +  1)
P
r.
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With the aid of this symbol, equation (1) can be written in the form

We have

~p+ r — r V , P
r r ' r -  1_ (2)

Ahr) =
m when r =  1 

,0 when r >  1,
because if there is only one passenger, he cannot occupy more than one 
car, and there are m ways in which he can occupy exactly one car. Hence

' l l  =  g \s )  =  J1 when >• =  1

_rJ m (o when r >  1 
Equation (2) resembles the formula

for the binomial coefficients. Just as this formula can be used to construct 
Pascal’s triangle, equation (2) can be used to construct a table of the

numbers The above calculation of

We obtain the array

is needed to start the process.

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1

where is the entry in the p -th row and r-th column. Each entry is

obtained by adding the entry to the northwest and r times the entry to the 
north, where r is the column number. Thus, for example, 65 =  25 +  4-10.

An explicit formula for in terms of binomial coefficients is

P
r

[ ) ( r -  l)p + ••• +  ( - i r 1( r ^ 1) l >’

for 1 ^  r ^  p 

for r > p.
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This can be proved by mathematical induction, using equation (2). We 
shall omit the details.

To complete the solution to the problem we have merely to observe

that f{p,r) =  
ability is

1) • • • (m — r -f 1), so that the required prob-

P
r m(m — 1) • • • (m — r +  1)

mV

Remark. From the second solution to b one can obtain a new solution 
to part a, since a is the special case of b where r = m.

81c. If there are fewer passengers than carriages, then the probability that 
every carriage will be occupied is 0. Therefore the solution to part a must 
vanish when p < m, that is

m

Since m 
m — s this can be written in the form

m 
m — 1

for

P  =  0 

p < m.

( 7 r  -  u j 2*+ ( T r  -  • • •+( - ^ u r * = ° f°r p < m -

Next suppose p = m, i.e., the number of passengers is equal to the 
number of carriages. Then the only arrangements in which all carriages 
are occupied are those where there is exactly one person in each carriage. 
There are ml such arrangements, and so the probability of such an 
arrangement is ml/m”1. Comparing this with the solution found in part a, 
we see that

™m- ( 7 ) ( r n  -  1 r + ( 7 ) ( m -  2)m-  • • • +  i ) 1"1 =  m -

Multiplying by (—l)m_1 and using the fact that 
becomes

m
m — s , this

( 7 ) im- ( 7 ) 2m + ( 7 ) 3m -  ’ ' ' +  =  (—l)m-1m!

82. Let us first compute the total number of possible outcomes of the 
experiment, i.e. the number of ways in which one can arrange the 20 slips 
in a circle so that capital letters alternate with small letters.

In doing this we will regard two arrangements as the same if they 
can be obtained from each other by rotating the circle. With this con
vention we may suppose that the letter A is always at the top of the
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circle, since each arrangement can be rotated until this is the case. There 
are then 9 positions for the remaining capital letters, and so these can be 
arranged in 9! ways. The small letters can be arranged in 10! ways, and 
hence the total number of possible outcomes is 9! 10!

Let us now compute the number of unfavorable outcomes, i.e. those 
in which at least one capital letter is next to the corresponding small letter. 
Let A1 be the set of outcomes in which A is next to a, A2 those in which B 
is next to b, . . .  , and A10 those in which J  is next to j.

Then A1 U A2 U • • • u  A10 is the set of all unfavorable outcomes. 
We can calculate #{A1 U A2 U • ■ • U A10) by the principle of inclusion 
and exclusion, provided we know the quantities #(A {), #{A t n  yQ, 
#{Ai n  A{ n  Ak), etc. By symmetry all the terms #(yQ have the same 
value, which we will call av Similarly all the terms #(v4j n  AJ  have the 
same value, which we will call a2. We similarly define a3, a4, . . . , a10. 
Then the principle of inclusion and exclusion gives

It remains only to determine the numbers alt a2, . . . , a10.
The number ax of arrangements in which a given capital letter and the 

corresponding small letter (say, A and a) are next to each other can be 
determined in the following way. Arrange the 18 slips bearing the letters 
other than A and a in a circle in any way such that capital letters alternate 
with small letters; this can be done in 9! • 8! different ways (compare 
with the proof that the total number of all possible arrangements is 
10! • 9!). Then insert the slips bearing the letters A and a between any 
two of the other letters (A is, of course, to be put next to a small letter 
and a next to a capital letter); this can be done in 18 different ways, since 
there are 18 different places where the two extra letters can be inserted. 
It follows that

Similarly, to determine a2 we arrange the 16 letters exlcusive of A, a, 
B, and b in a circle; this can be done in 8! ■ 7! ways. Then insert A and a 
between two consecutive letters (with A next to the small letter and a next 
to the capital letter); this can be done in 16 ways. Finally insert B and b 
between any two consecutive letters other than A and a (which must not be 
separated); this can be done in 17 different ways (there are 18 pairs of 
adjacent letters, between all but one of which B and b can be inserted). 
It follows from these considerations that

# (^ i u  • • ■ u  A10) =  I0fll

a2 =  8! ■ 7! • 16 • 17; 10 • 9——- 8! • 7! • 16 • 17 =  10! • 8! ■ 17. 
1 • 2
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All the numbers ak, where k — 1,2, . . .  ,9, can be determined in this 
way. To find the number ak, we arrange in a circle the 20 — 2k letters left 
after deleting k capital letters and the corresponding k small letters; this 
can be done in (10 — A:)! (10 — k — 1)! ways. We then insert the k pairs 
of capital and small letters between the other letters, which can be done in 
(20 — 2A)(20 — 2k +  1) • • • (20 — 2k +  k — 1) ways. (Inserting a capi
tal and its corresponding small letter increases by 2 the total number of 
letters but only increases by 1 the number of places where the next pair 
can be inserted because the preceding pair cannot be separated.) We 
thus obtain:

ak =  (10 -  A:)! (10 -  k -  1)! (20 -  2A)(20 — 2k +  1) • • • (20 -  k -  1). 

Hence

«3 =  7! ■6!-14-15■16; 
10-9-8
I -2-3

7! - 6! -14-15 -16 =  10! - 8! -10;

a4 =  6!•5! • 12•13•14-15;
10-9-8-7 6 1 - 5 M2 - 13-14-15 =  101-7!-
1 -2-3-4

=  5!•4!•10 ■ 11 ■ 12 ■ 13•14 
10-9-8-7-6
1-2-3-4-5

5!-4! -10-11•12-13-14: 1 0 . - 7 . i 2 ;
15

a8 =  4! • 31 • 8 • 9 • 10 • 11 ■ 12- 13;

a 10-9-8-7-6-54 , 3, g 9 10. 11. 12-i3 =  10!-4! - 429; 
1 • 2 • 3 • 4 • 5 • 6

«7 =  3!•2!•6•7• 8 • 9 • 10-11-12;

I 0 - 9 - 8 - 7 - 6 - 5 j 4 10- II • 12 =  10! -4! -66;
7 1 - 2 - 3 - 4 - 5 - 6 - 7

a 8 =  2 ! -  1 1 - 4 - 5 - 6 - 7 - 8 - 9 -  10- 11;

a9

10- 9- 8- 7- 6- 5- 4- 3  
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8

2!- 1 I - 4- 5 - 6- 7- 8- 9-  10- 11

101-165;
11-1- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -  10;

10 - 9 - 8 - 7- 6- 5- 4- 3- 2  
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

11-1- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -  10

=  10!•10.
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To determine a10, the number of arrangements in which each capital 
letter is placed next to the corresponding small letter, we proceed as 
follows. Arrange the 10 capital letters in a circle; as was shown above, 
this can be done in 9! essentially different ways. The 10 small letters can 
then be placed next to the corresponding capital letters in two ways (each 
small letter can be to the left of the corresponding capital letter or to the 
right). Thus,

n10 =  2-9! ;  ( j ° ) a 10 =  2 • 9!.

Finally, for the number of favorable outcomes we obtain:

10! • 9! — U ■ • • U A 10)
=  10! • 9! -  10! • 9! • 2 +  10! • 8! • 17

-  10! • 8! • 10 +  10! • 7! — -  10! • 7! ■ —
2 15

+  10! • 4! • 429 -  10! • 4! • 66 +  10! • 165
10! • 10 +  2 • 9!

=  10!
689-9! +  8! • 7 +  7! • —  +  ' ■ 363 +  155 +  2-9!
30 4

=  9! • 439,792, 
which means that the required probability is

9! 439,792 439,792 439,792
10! 9! 10! 3.528,800

0 . 12.

83a. First solution. The experiment under consideration here consists of 
n +  m customers, n of whom have five-dollar bills and the other m of 
whom have ten-dollar bills, getting in line to buy tickets. The total number 
of possible outcomes to this experiment is equal to the number of ways the 
m customers with only ten-dollar bills can be arranged in the line of n +  m

people, that is, We will represent these ^  j  possibilities

with the aid of the ^  ^  shortest paths joining the intersections (0,0)

and (n,m) of a network of roads such as we considered above (see the 
remarks preceding problem 61). Specifically, starting from the point 
A0 =  (0,0) lay off a segment A0A1 of length 1 either to the right (if the first 
customer has a five-dollar bill) or upwards (if he has only a ten-dollar 
bill). From the point Aly lay off a segment AXA2 of length 1 either to the 
right or upwards, according to whether the second customer has a five- 
dollar bill or only has a ten-dollar bill. From the point A 2 lay off a
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segment A2A:, or length I, horizontally or vertically according to whether 
the third customer has a fivc-dollar bill or has only a len-dollar bill, etc.

(/77
I possible arrangements of the

n +  m customers into a line corresponds to a path At)AxA2 ■ • ■ An., m 
consisting of n horizontal segments and m vertical segments. All these 
paths end at the point Anlm — (n,m) which lies n units to the right of and 
in units above the point A0; they constitute all possible shortest paths 
joining the intersections A„ — (0,0) and An.Vm — (n,m).

Let us find the number of cases in which none of the customers has to 
wait for change. In order for this to happen, it is necessary and sufficient 
that in front of each customer there be at least as many customers with 
fivc-dollar bills as customers who have only tens. This means geometrically

a. b.
Fig. 61

that every favorable outcome corresponds to a path A0A1Ag • • • Anl_m 
which lies entirely below the straight line L which passes through the 
point Ao at an angle of 45° above the horizontal (fig. 61a); in particular, 
the first segment of such a path must be horizontal.

It follows from this that every path corresponding to an unfavorable 
outcome must cross the line L, or what is the same thing, must have a 
vertex lying on the line Lx which is parallel to Land obtained by moving L 
one unit upwards (fig. 61b). For m > n our paths will necessarily have a 
vertex on the line Lx\ for in this ease the point An+m is located above the 
lineL. Suppose now that m <; n; let us find how many of the paths have a 
vertex on the line Lx. Let A()AXA2 ■ ■ ■An+m be such a path and Ak the first 
of its vertices which lies on the line Lx. Reflect the portion A0AX • • • Ak of 
this path over the line L,. We obtain a path A0'AX' • • • A'k_xAkAk+x • • • 
An+m which joins An+rn to the point A0' which is symmetric about L, to the 
point A0 (that is, it is located one unit above and one unit to the left of A0; 
see fig. 61 b). Further, for m V* n, every shortest path joining the points A0' 
and AnJtm necessarily intersects the line Lx. If Ak is the first point of
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intersection of any path A ^A k • • • Ak_xAkAk+1 • ■ • An+m with the line L^, 
then by reflecting the portion A0'AX ■ ■ ■ A'k_1Ak over Lj we obtain a path 
A0AX • • • AkAk+1 • • • An+m joining A0 to An+m and having a vertex on 
the line Lv Thus for m ^  n the number of paths joining A 0 to A n+m 
and having a vertex on the line Lx coincides with the number of paths 
joining A0' to An+m. But these latter paths each consist of n +  1 horizontal

segments and m — 1 vertical segments; there are hence ™ j  of them.

Thus in the problem under consideration there are a total of ^

(equally likely) possible outcomes; for m > n the number of unfavorable 
outcomes equals the total number of outcomes, and for m ^  n it equals

j . It follows from this that the number of favorable outcomes is

zero when m >  n, and is

n +  in 
m — 1

In +  in 
\  m

n +  m\ _  (n +  m)! (n +  in) I
m — 1/ n \ m\ (n +  1)! (m — 1)!

(n +  m)! f 1 1
n! (in — l)!lm n +  1 
(n +  m)! (n — m +  1) 

(n +  1)! m !
when m ^  n.

This means that the probability that none of the customers has to wait for 
change is 0 for m > n, and for m sS n is equal to

(n +  m)\ (n — m +  1) In +  m\ _  (n +  m)\ (n — m +  1) (n +  m)\ 
(n +  1)! ml I I in / (n +  1)! m\ /  /i! ml

_  n — in +  1 
~  n +  1

Second solution. In this section we will discuss a method which does 
not derive the formula for the number of favorable outcomes, but merely 
proves its correctness once it has been guessed. Suppose n >  0, and let 
S(n,m) be the number of favorable outcomes. Then, as in part a, S(n,in) is 
the number of paths with n horizontal and m vertical segments joining the 
point (0,0) to the point (n,m), and having no vertices on the line Lk of fig. 
61b. We have S(n,m) =  0 when n <  in, since then the point (n,m) lies 
above L.

Also, we have S(n,0) =  1, since the only path with n horizontal 
segments and no vertical segments is a horizontal line. The next step is to 
derive a recursion formula for S(n,m) when n,in >  0. To do this, note 
that the paths ending in (n,m) are of two types: those which pass through
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{n — 1 ,m) and those which pass through (n, m — 1). There are S(n — 1, m) 
paths of the first type and S(n, m — 1) of the second type. Therefore

S(n,m) =  S(n — 1, m) +  S(n, m — 1). (1)

Now suppose we have guessed that when 0 ^  m ^  n +  I,

S(n,m) n — m -f- 1 / n +  m 
n +  1 \ m (2)

(say on the basis of a direct computation of S{n,m) for small values of n 
and m). We can then prove our conjecture by mathematical induction on 
the sum n +  m. When n +  m =  1 one can verify (2) directly. Suppose we 
have already shown that

S(a,b) a — b +  1 ja +  b\ 
a + b  I b I

for all pairs a,b such that 0 ^  b ^  a +  1 and a +  b <  n +  m. We must 
then derive (2) from this assumption. If m =  0, then (2) reduces to 
S(n,0) =  1, which is true by a remark made above. If m = n +  1, it 
reduces to S(n, n +  1) =  0 which was also noted earlier. When 0 <  m <  
n +  1, we use equation (1), and apply the induction hypothesis to the two 
terms on the right-hand side. This gives

S(n,m) = (« — 1) — m +  1 In — 1 -f m

+

(n — 1) +  1 \ m
n — (m — 1) 4- 1 /  n +  m — 1 

n +  1 \ m — 1
_  n — m (n — m — l)! n — m +  2(« — m — 1)!

n (n — 1)! ml n +  1 n \ (m — 1)!
_  (n — m — 1)! In — m n — m +  2 

n \ (m — 1)! \ m n +  1
_  (n — m — 1)! (n +  m)(n — m +  1) 

n ! (m — 1)! (n +  l)m
_ n  — 7n +  l /n  +  m 

n +  1 \ m
This completes the induction, and shows that (2) is valid for all m ,  n  

with 0 ^  m ^  n +  1. The required probability is then

n — m +  1
s_dhinL  = } « +  i
n +  m^

m 0

for 0 5S m ^  n +  1 

otherwise.
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Third solution.6 We have to find the probability p{n,m) of the event 
A that at each point in the ticket line there are at least as many customers 
with five-dollar bills as there are with ten-dollar bills ahead of that point. 
Let q(n,m) be the probability of the event B that at each point of the line 
(including the end) there are more customers with five-dollar bills than 
there are with ten-dollar bills ahead of that point. In order for event B 
to occur, the first customer must have a five-dollar bill, and the remaining 
n +  m — 1 customers must be arranged so that among themselves (i.e., 
without the first customer), they satisfy the event A. Since the probability 
that the first customer has a five-dollar bill is «/(« +  m), we therefore have

q{n,m) - —7---- p(n — 1, m).
n +  m

If we can determine q{n,m), we will then be able to find p(n,m) by 
using this formula. So we will now show how to determine q(n,m).

It is clear that for n ^  m, q(n,m) =  0. Suppose now that n > m and 
consider any arrangement of the n +  m customers {n of whom have five- 
dollar bills and the other m of whom have only tens) into a line. From 
this arrangement we can obtain n +  m — 1 new arrangements as follows: 
move the first customer from the front of the line to the last place (thus 
creating a new arrangement in which the 2nd, 3rd, . . . , and (n +  m)th 
customers of the original one are one place further forward); then repeat 
this process (thus giving a line in which the first two people of the original 
line occupy the two last places and the other people are two places further 
forward than originally). By repeating this process until the original 
arrangement is finally recovered, we obtain a total of n +  m — 1 new 
arrangements. Adding to these the original arrangement, we obtain a 
total of n +  m arrangements; we will now show that exactly n — m of 
them are favorable, i.e. are such that event B takes place.

Let us make use of the same geometric representation of the different 
arrangements of the n +  m people in line as in the first solution to this 
problem (compare with pp. 168-169 and fig. 61a). To every arrangement 
there will correspond a path A0AXA2 ■ ■ ■ An+m_xAn+m consisting of n 
horizontal segments and m vertical segments (fig. 62a). To the favorable 
arrangements there will correspond paths in which every vertex other than 
A0 is preceded by more horizontal segments than vertical ones, that is, 
paths which (1) lie below the line L which passes through the point A0 
at an angle of 45° above the horizontal and (2) have no vertices other than 
A0 on the line L. It is convenient to imagine the path A0AXA2 • • • An+m 
as a staircase leading from the point A0 to the point An+m and consisting 
of a certain number of steps of various heights and widths (where the sum

9 This solution is somewhat longer than the preceding ones, but it has the advantage 
that it can be easily generalized. (See for example the first solution to part c.)
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of the widths of all the steps is n and the sum of the heights is m). If we 
illuminate this staircase from above with a beam of parallel rays which 
make an angle of 45° with the horizontal, then the favorable arrangements 
of the customers will be those corresponding to staircases in which light 
falls on the base A0 (that is, A0 does not lie in the shadow thrown by the 
steps of the staircase).

To represent all n t  m arrangements obtained from a given one by 
successively moving the first customer to the end of the line, adjoin to the 
end An_i_1rl of the path AqAiA2 An+m tt path/In_|_m./lri_j.,n_|_1/lM_|_m_|_2
A2n+2m which is an exact replica of A0A,A2 ■ • ■ An+rn (fig. 62b). Then our 
n +  m arrangements will correspond to the paths which consist of n +  m 
consecutive unit segments and start respectively at the points A0, Ax,

A2, . . . , A n+m_1 (and consequently end respectively at the points An+m, 
dn+m+1, 4n+m+2, • • • , ^ 2n+2rn_1). we 110w illuminate the path A0A1A2 ■ • • 
A2n+2m from above with a beam of parallel rays falling at an angle of 45° 
to the horizontal, then the favorable arrangements of customers will 
correspond to paths AkAk+1Ak+2 • • • An+m+k which start at a point Ak on 
which light falls.7 Thus we have only to compute how many of the points 
A0, A i, A2, . . . , An.Vm_x are illuminated by the parallel beam.

Of the points A0, Au . . . , An+m_u the only ones which have a chance 
of being illuminated are the n points A{ for which the segment AtAi+1 is 
horizontal. But even such a point need not be illuminated, for the 
segment A{A,+1 may lie in the shade cast by a later vertical segment. 
Denote by v the number of vertical unit segments of the path A0, Aj, . . . ,

1 If the point Ak does not lie in the shade of the path AkAk+1Ak+2 • ■ • An̂ m+k, 
then Ak cannot lie in the shade thrown by the steps from A„+m+k to A2n+Zm either. 
This follows from the fact that the path An+m+kA„4m+k+l ■ ■ ■ A2n̂ m is a duplicate of 
AkAk+1 • • • A„+m.
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An+m which cast their shadows to the left of A0 (i.e. segments like Ai)A1 and 
A,A2 in fig. 62b). Then the other /// — v vertical segments of A0Ay • • • An+m 
cast their shadows on horizontal segments. Since An+mAn+m+1 ■ • ■ A2n+2m 
is a replica of A{)Ay • ■ • A tH.m, exactly v vertical segments of An+mAn+m+x ■ • • 
A2/t-h2m east their shadows to the left of An+m. These shadows fall on 
horizontal segments of A0Al • ■ • A n+m; hence there are altogether 
(in — e) +  v =  in horizontal segments of A0Ay • • • An+m in the shade. 
Thus, of the n points At which had a chance of being illuminated, exactly 
m arc eliminated by virtue of the shadow cast on the segment AxAi+l. 
Hence there remain n — m illuminated points among A0, Au . . . , An+m_x. 
For example, in fig. 62b, // =  7, in =  4, and exaetly 7 — 4 =  3 of the 
points arc illuminated. We have thus proved that for n > m exactly 
n — m of the n -f w arrangements of customers obtained from any one 
arrangement by successively putting the first customer at the end of the 
line have more people with five-dollar bills than with tens in front of 
each customer.

Note that the n +  in arrangements obtained from a single one by 
successively moving the first customer to the end of the line are not 
necessarily all distinct. If n and m arc not relatively prime, then it may 
happen that a line of n -f- in people consists of several parts whieh are 
exact repetitions of each other (for example, six customers with fives and 
three customers with only tens can be arranged in the following order: 
5 10 5 5 10 5 5 10 5; the numbers 5 and 10 here denote respectively 
customers having fives and customers having only tens). In this case we 
can move the first customer to the end of the line less than n +  in times 
(three times in our example) and arrive at an arrangement identical to the 
initial one. However, it is easy to sec that in this case each different 
arrangement will be repeated the same number of times (in our example 
n + hi — 9 and among the nine arrangements, there are three different 
ones, each repeated three times).

Therefore, the ratio of the number of different favorable arrangements 
to the total number of different arrangements is the same as the ratio 
which we obtain by failing to identify identical arrangements, that is, it 
equals (// — m)l(n +  in). Thus, for // >  in all possible arrangements of the 
n +  in customers into a line can be divided into groups, in each of which 
the ratio of the number of favorable arrangements to the total number of 
arrangements equals (n — ///)/(// +  in).

We have therefore shown that

n — m if n > in.
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We saw earlier that

p(n — 1, m) = n +  m 
n

[ "
, n — m

n

if n ^  m 

if n > m.

Replacing n by n -f- 1, we get

f 0 if n +  1 sS m

3̂ ii + i
if n +  1 >  m

I n +  1

Remark. For the special case n = m, a fourth solution is indicated in the 
remark at the end of the solution to problem 84a.

83b. First solution. Part b can be solved similarly to the first solution to 
part a. The initial presence of p fivc-dollar bills in the till means that it 
is possible to give immediate change to every customer if and only if for 
each customer in the line the number of people in front of him who have 
only ten-dollar bills does not exceed by more than p the number of people 
who have fives. Geometrically, this means that the paths corresponding 
to favorable outcomes lie entirely below the line L v, which is obtained by 
moving the line L p units upwards (fig. 63). In other words, the paths 
corresponding to unfavorable outcomes are those which have points lying 
on the line L p+1 obtained by moving line L p one unit upwards, (see fig. 63,

Fig. 63
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where p — 3). It is clear that for in > n +  p, all our paths will have 
vertices on the line therefore in this case the required probability
is zero. On the other hand, for in ^  p all outcomes are favorable and the 
required probability is 1.

We will now assume that m n +  p but m ^  p +  1. It can be 
proved by the same method as in the first solution to problem 83a that 
the number of paths corresponding to unfavorable outcomes is in this case 
equal to the number of paths joining the point An+m to the point A0P 
obtained by reflecting A0 in the line Lp+l (that is, the point p +  1 units 
above and p +  1 units to the left of A0). It follows from this that the total

n +  m 
\m — p — 1,

(n +  m\ / n +  m
m ) \m — p — 1,

n +  p ^  m ^  p +  1 the probability that none of the customers will have 
to wait for change is

number of unfavorable outcomes is

number of favorable outcomes is

whence the total

Thus, for

n +  in\ I n +  m
m ) \m — p — 1

n +  in 
m

=  1 -

=  1 -

_______ (in +  n)\_______  Km +  n) !
(m — p — 1)! (n +  p +  1)!/ m! n\

m(tn — 1) • • • (in — p)
(n +  1)(« +  2) • • • (n +  p +  1)

Second solution. If we have been able to arrive at the correct formula 
by some process of educated guesswork, we can prove it by mathematical 
induction as in the second solution of part a. For let Sp(n,m) be the 
number of paths with n horizontal and m vertical segments, leading from 
(0,0) to (n,m), and having no vertices on Lp+V We see as in part a that if 
m,n > 0, then Sp(n,m) =  Sp(n — 1, m) +  Sp(n, m — 1). If m > n +  p, 
then Sp{n,m) =  0, since the point (n,m) lies above the line Lv. If m ^  p,

(
fi m\I , since in this case no path from (0,0) to (n,m) 

can have a vertex on Lp+1. Suppose we have somehow guessed that for
p ^ m S .  n -\-p  +  1,

Sp(n,m) = m(m — !)•••  (m — p)
(n +  l)(/i +  2) • • • (n +  p +  1).

n +  m
m ( 1)

We can then prove (1) by induction on n +  m. When n +  m — 1, (1) can 
be verified directly. Assume we already know that

Sp(a,b) j ______ b(b — 1) • • • (b — p)
(a +  l)(fl +  2) • • • (a +  p +  1)_ ■ ; * )
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for all pairs a, b with p ^ b < a ~ \ - p  + 1 and a +  b <  n +  m. If m — p, 

then (1) reduces to S p(n.p) = \ M , which is true as noted above.

When m = n +  p +  1, (I) reduces to S p(n, n -\- p 1) =  0, which we 
also know to be correct from the above remarks. I f / ? < / i 7 < / 7 +/ 7  +  l, 
we use the equation Sp(n,m) — Sp(n, m — 1) +  Sp(n — 1, m), applying the 
induction hypothesis to both terms on the right. This gives

SP(n,m) 1 -

+

(m — l)(m — 2) • • • (m — p — 1) 
(n +  1 )(n +  2) • • ■ (n +  p +  1) _

— 1) • ■ • (in — p)

n + m — 1
m -  1

1 -
n(n +  1) • • • (;j +  p) J

n +  m — 1 
m

(n +  ra — 1)1 (?7 +  m — 1)!
n \ (m — 1)! (n — 1)! m\

(m — l)(m — 2) • • • (m — p — 1) (n — m — 1)! 
(n +  l ) (n  +  2) • • • (n +  p +  1) n \ (m — 1)!

m(m — 1 )■■• (m — p) (n — m — 1)! 
n{n +  1) • • • (n +  p) (n — l ) ! m !

(n +  m — 1)! /J_ +  j_\
(n — 1)! (m — 1)! \n m)

(m — l)( /n  — 2) • • • (m — p) (n +  m — 1)!

(n +  l)(n +  2) • • ■ (n +  p) nl (m — 1)!

Im — p — 1
X --------- --------

\ n +  p +  1

(n +  m)\ (m — l)(m — 2) • • • (m — p)
/lira! (n +  1)(/? +  2) • • • (» +  p)

X
(n +  m — 1)! n +  in

1 -

/7! (//! — 1)! n +  p +  1

/77(/77 — 1 ) • • • (/?7 — p)
o  +  l)(/7 +  2) • • • (n +  p +  1) .

77 +  771
717

This completes the induction. The required probability is

S p(n,m) 7i +  m 
m

Remark. In the special case p =  1 the problem can be solved by a method 
similar to that used in the third solution o f part a. Suppose that originally there is
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one fivc-dollar bill in the cash register, and let r(n,m) be the probability of the 
event C that the cashier can always give change when required. In order for 
event A to occur, the first customer must have a fivc-dollar bill, and the remaining 
n + m — 1 customers must be arranged so that among themselves (i.e., excluding 
the first customer) they satisfy the conditions for event C. Hence if n > 0, we 
have

Since

we obtain

p(n,m) =  — ----- r(n — 1 , m).n + m

p(n,ni)
0

n — m + 1
n + 1

if m > n 

if m < n

0
r(n — 1, m) = (n + m)(n -  m + 1)

«(« + 1)

if m > n 

if m n.

Replacing n by n + 1, this becomes

r(n, m)
0

(n + m + l)(/i — m + 2) 
(* + l)(n + 2)

if m > rt + 1 

if m ^  n + 1.

83c. First solution. In order that none of the customers has to wait for 
change, it is necessary and sufficient that the number of people with one- 
dollar bills in front of each customer be at least twice the number of people 
in front of him who have only three-dollar bills. The simplest way of 
computing the probability of this event is with the aid of the method 
outlined in the third solution to part a; this solution carries over to part c 
almost word for word. Let us compute first of all the probability that at 
each point in the line (including the end) there are more than twice as many 
people with one-dollar bills as with three-dollar bills ahead of that point. 
To each such arrangement of customers there corresponds a “staircase” 
AqAiA2 • • • A n+m whose base A0 will not lie in the shade when the staircase 
is illuminated from above by a beam of parallel rays which fall at an angle 
such that the shade thrown by any vertical segment is twice the length of 
that segment (in other words, the tangent of the angle between the rays 
and the horizontal is 1/2; see fig. 64). As in the third solution to part a, 
it can be shown that the probability that in front of each customer there 
are more than twice as many customers with dollars as with three-dollar 
bills is (n — 2m)j{n +  2m) (we assume here that n >  2m; for n ^  2m the 
probability in question is zero).
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A0 A,

Fig. 64

Further, reasoning as in the third solution to problem 83a, we arrive 
at the following conclusion:

Let there be two lines, the first consisting of n customers who have 
one-dollar bills and m who have only three-dollar bills (a total of n +  m 
people), and the second consisting of n 4- 1 customers with one-dollar bills 
and m with only three-dollar bills (a total of n +  m -j- I people). Then the 
probability that in the first line there are at least as many people with dollars 
as people with only threes in front of a given customer is (// +  m +  1)/ 
( aj +  1 )  times the probability that in the second line there are more than 
twice as many people with dollars as people with only threes in front of 
the customer.

It follows from this that the probability to be computed in this 
problem is

n - 2m 4-1 n - \ - m - r \ _ n  — 2m -f- 1
m 4  /» r  1 n r  1 n +  1

for n ^  2m, and zero for n <  2m.
Second solution. The problem also has a solution whose general idea 

is close to that of the first solution of part a, but is appreciably more 
complicated. , >

As in the first solution to part a, we represent the I j equally

likely arrangements of the n +  m customers into line with the aid of the

shortest paths joining the points 

A o =  (0,0) and An+ (n,m).

Then the favorable arrangements are those which correspond to paths 
located on or below the line L which passes through the points

A0, Bx =  (2,1) B2 = (4,2), . . . , Bm = (2m,m)
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(fig. 65a).8 For n < 2m there are no such paths (for in this case the point 
Amm is located above the line L); from here on we will assume that 
n 2m.

Let us now compute the number of unfavorable arrangements; these 
are the arrangements which correspond to paths from A0 to An+m which 
cross the line L. All such paths will have vertices on the line which is 
parallel to L and obtained by translating L a distance of 1 unit upwards

L

(fig. 65b). We thus have only to compute how many paths from A0 to 
An+m have vertices on Lv

As in the first solution to part a, denote by A0' the point located one 
unit above and one unit to the left of A0 (fig. 65b). We will show that the 
number of shortest paths from A0 to An+m which have vertices on the line 
Lj is exactly twice the number of shortest paths from A0' to An+m.

Denote by NAB the number of shortest paths joining the points
8 In the Cartesian coordinate system whose origin is at A 0 and whose x-axis and 

y-axis are respectively horizontal and vertical, the equation of the line L can be written 
in the form x =  2y.
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A and B\ if A =  (i,j) and B =  (k,l), then NAB =  *' 1 [ The

following points are located on the line Lp. D1 =  (1,1), D2 — (3,2), Z)3 =  
(5,3), . . . Dk = {2k — 1, k), . . . , Dm =  (2m — 1 ,m). Since

and

(3 fc- D! =  2 (3 fc- 1)! =  2 /3fc -  1\
k \ (2k — 1)! (k — 1)! (2/c)! \ k - l )

for arbitrary k (k =  1, 2, . . . , m) we have

NAn Dk 2 NA.q Dk'
Let us now compare the number of shortest paths from A0 to An+m 

which first meet Lx at the point Dk with the number of such shortest paths 
from A0' to An+m.

The number of shortest paths from A0 to An+m which pass through 
the point Dk is equal to

' N nxAn+m — 2NAo,Dl ' NDxAn+m’
and the number of shortest paths from A0' to An+m which pass through 
the point D1 is NAa>D ̂• ND̂ An+m. Consequently, there are exactly twice 
as many of the first kind of paths as of the second.

The number of shortest paths from A0 to An+m which pass through 
the point D2 but do not pass through the point Dx is

N a q D i  ’ N D 2A „ +m N a 0 D x '  N D x D i  '  N D z A n+m

(the first term here gives the total number of paths from A0 to An+m which 
pass through D2 and the second gives the number of such paths which 
also pass through Dj). The number of such paths from A0' to An+m is

N A a '  D z A n+m N A n '  D XN  D xn , N  D i A n+m-

Since NAoL>i = 2AJA^n% and Na„d1 — the number of paths from
A0 to An+m which pass through D2 but not Dk is exactly twice the number 
of such paths from A0' to An+m.

Similarly, the number of shortest paths from A0 to An+m which pass 
through D3, but do not pass through either Dx or D2, is

N a 0 D 3 ' N D 3 A n+m —  N A n D x '  N D LD 3 '  N D 3A n+m

~  N a 0 d 2 '  N d 3 d 3 ‘ N D 3A„i-n  +  N a o D !  ‘ N d xd 3 N d 3 d 3 ' N D 3A„+m >

(the second and third terms give the number of paths from A0 to An+m 
which pass through Dx and D2 respectively, and the fourth term gives
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the number of paths which pass through all three points Dx, D2, and D 3). 
The number of such paths which join A0' to A n+m is

Nj 0'd3 • Njy3An+m — NAfj,Dl • NDiD3 • N DaAn+m
~  ^Ao'Di' N DiD3 • N DaAnJrm +  Na0>Dl • N DlDi • Nj)3D3 ■ N D3An+m;

and here it is again easy to see that the number of paths from A0 to An+m 
is exactly twice the number of paths from A0' to A n+m . Continuing to 
reason in the same way, we can prove that for any k  the number of shortest 
paths from A0 to An+m which first meet the line Lx at the point Dk is exactly 
twice the number of shortest paths from A0' to A n+m which first meet Lx 
at that point.

Therefore, the total number of shortest paths from A0 to An+m which 
have vertices on the line Lx is exactly twice the number of shortest paths 
from Aq to An+m which have vertices on that line. But any shortest path 
from A0' to An+m has to have at least one vertex on Lx (for n ^  2m, the 
point A0' is located on the left side of Lx and the point An+m on the right 
side). Consequently, for n ^  2m the number of shortest paths from A0 to 
An+m which have vertices on the line Lx is 2NA ,A .

Now it is easy to answer the question raised in the problem. For 
n < 2m there are no favorable outcomes at all to the experiment; con
sequently in this case the required probability is zero (this, of course, 
was obvious to begin with). For n ^  2m, the number of unfavorable 
outcomes is

7N = ( n + ■
Ao'An+m  y  m  —  \ y

since the total number of (equally likely) possible outcomes to the experi-
( n -)- m\I, the number of favorable outcomes for n ^  2m is m j

(n +  m\ _  In +  m\ _  (n +  m)! _  (n +  m)!
I m ) \m — 1/ m ! n! (m — 1)! (n +  1)!

_  (n 4- m)! (1 2 )
(m — 1)! n! (m n +  lj 

_  (n +  m)l (n — 2m +  1) 
ml (n -(- 1)! 

and consequently, the probability sought is

(n +  m)l (17 — 2m +  1) j(n  +  m) \ _  n — 2m +  1
m!(n +  l)! /  mi ni  n +  1

Third solution. If we have been able to arrive at the answer to our 
problem by some process of educated guesswork, we can, as in parts a 
and b, verify it by mathematical induction. Let T(n,m) be the number of
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shortest paths from (0,0) to (n,m) having no vertices on the line L x of fig. 
65b. If n <  2m, then T(n,m) =  0, since in this case the point An Vm lies 
above L .  Also, if m =  0, then T(n,0) =  1, since the only path in this case 
is a horizontal line.

We next obtain a recursion formula for T(n,m) when n, m > 0. The 
favorable paths from (0,0) to (n,m) fall into two categories, those passing 
through the point (n ,m — 1), and those passing through (n — 1, m). 
There are T(n, m — 1) paths of the first type, and T(n — 1, m) of the 
second. Hence T(n, m) =  T(n, m — 1) +  T(n — 1, m) when n, m > 0.

Now suppose we have somehow guessed that for 0 g  2m < n +  1, 
the correct formula is

T(n,m) n — 2m -f 1 
n +  1 ( 1)

Then we can prove (1) by mathematical induction on n +  m. We first 
verify (1) directly for n +  m =  1. Now assume we have already shown
that

T(a,b) = 2b +  1 (a +  b 
b

for all pairs a, b such that 0 ^  2b ^  a +  1, a b < n -\~ m. If /; =  
2m — 1, then (1) reduces to T(2m — \,m ) = 0, which is true by the 
remark made above. If m =  0, (1) reduces to T(n, 0) =  1, which was also 
noted above. If 0 <  2m < n -f 1, then we can apply the induction 
hypothesis to both terms on the right-hand side of the formula T(n,m) =  
T{n, m — 1) +  T(n — 1, m). This gives

T(n,m) n — 2(m — 1) -f 1 (n + m — 1\ 
n +  1 \  m — I I

, (n — 1) — 2m -f 1 In +  m — 1\
T  (n — 1) +  1 I m /
n — 2m +  3 (n -f m — 1)! , n — 2m (n -f m — 1)1 

n +  1 nl (m — 1)1 n (n — 1)1 m!
In — 2m +  3 n — 2 m\(n  +  m — 1)1 
\ n +  1 m / n ! (m — 1)!
(n +  m)(n — 2m +  1) (n +  m — 1)1 

(n +  1 )m n \ (in — 1)1
n — 2m +  1 (/i +  mi)\ 

n +  1 nl ml 
n — 2m +  1 In 3- >n\ 

n +  1 \ in / ’
completing the induction. The required probability is T(n, m) n +  m 

m
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Remark. Part c can also be formulated as follows: n objects possessing
some property X  and m objects possessing some property Y are arranged in a

(
n +  m \

I possible arrangements o f

these n +  m objects is equally probable). What is the probability that at least 
twice as many objects with property X  as objects with property Y stand in front 
of each object in the sequence?

In this form the problem admits a completely natural generalization: one 
may ask for the probability that in front o f every object there are at least r times 
as many objects with property X  as with property Y. It is easy to see that all 
three solutions for the special case o f r =  2  carry over to the general case of 
any integer r (it is especially simple to transform the first solution of part 
c into a solution of the general problem). It then turns out that for arbitrary 
integral r the required probability is zero for n <  rm (which is obvious) and 
is (n — rm  +  1 )l(n +  1) for n ^  rm. In the special case o f r — 1 we arrive at a 
problem equivalent to part a.

84a. We have to compute Fn, the number of ways of dividing 2n points on 
the circumference of a circle into n pairs in such a way that the n chords 
formed by connecting the ends of each pair do not intersect each other. 
Denote the 2n points by Ax, A2, . . . , A2n, proceeding counterclockwise 
around the circle. Each of the n chords is of the form AXA}, where / <  j. 
We will call At the start of the chord and Aj the end of the chord. Consider 
the first p points Ax, A2, . . . , A p, where p is any integer in the range 
1 ^  p S  2n. Among these points there must be at least as many starts of 
chords as there are ends of chords (because if the end of a chord is one of 
the points Ax, . . . ,  A p, then the start of that chord is also one of the points 
Ai, • • . , A p).

Conversely, suppose that the points Ax, . . . , A2n are divided into two 
sets S  (the set of starts) and E (the set of ends) of n points each in such a 
way that for any p sS 2n there are at least as many starts as there are ends 
among the points Ax, . . . , A p. We will prove that there is then one and 
only one way of connecting the starts to the ends so that the resulting 
chords do not intersect.

To show this, consider the smallest j  such that Ax is an end (we have 
j  5? 2 since Ax is a start). Then Ax must be connected to Ax_x. For if it 
were connected to At where i < j  — 1, then A}_x would be the start of a 
chord intersecting AjAj. Now delete the points A}_x and A}, and apply the 
same reasoning to the remaining points. We see that the first end among 
these points must be connected to the immediately preceding start. 
(There is a preceding start by the hypothesis that there are at least as many 
starts as there are ends among Ax, . . .  , A p.) We then delete this pair and 
proceed in the same manner until all the chords are drawn.

We have thus shown that each set of n non-intersecting chords is
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completely determined by its n starting points, and that these can be 
prescribed subject only to the condition that there be at least as many 
starts as ends among the points Ax, . . . , Ap for anyp  2n. Therefore Fn
is equal to the number of ways of specifying the starting points subject to 
this condition.

Now let us think of the starts as customers in a ticket line with only 
five-dollar bills, and of the ends as customers with only ten-dollar bills. 
Then we see that Fn is equal to the number of arrangements in a line of 2n 
customers, n of whom have five-dollar bills and n of whom have only tens, 
in such a way that in front of each customer there are at least as many 
people with fives as people with only tens. Since by problem 83a (with 
m — n), the number of arrangements of 2n customers (or points) which

We have thus obtained a new solution to problem 54.
Another solution to problem 53b also follows immediately from 

this. For in the solution of problem 54 it was proved that Tn, the number 
of different ways of decomposing a convex n-gon into triangles with the 
aid of its diagonals, was connected with the number Fn by the relation

this result coincides with the answer to problem 53b obtained earlier by 
another method.

Remark. The argument presented here can also be applied in the reverse 
direction: assuming the answer to problem 54 (as obtained in the solution 
given on page 1 2 0 ) to be known, we obtain from it a new (fourth) solution to 
problem 83a for the special case o f m — n.

84b. The solution of this problem is closely related to the solution of 
part a above; it differs only in that it is based on problem 83c rather than 
on problem 83a.

Denote the 3n points in counterclockwise order around the circle by 
Ax, Az, . . . , A3n. Every triangle is of the form AxAjAk, where i < j < k .  
We will call Ax the start of the triangle, A3- the middle, and Ak the end. 
Let us combine the starts and middles of all the triangles into a set D and 
let E be the set of ends. Now consider the first p  points Ax, . . . , A v, 
where m is any integer in the range 1 ^ p < 3n. Among these points

Fn = Tn+ 2 .

This means that
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there must be at least twice as many in D as there are in E (for if the end of 
a triangle is one of the points Ax, . . . , A p, then the start and middle of that 
triangle are also among the points Aly . . . , Ap). Conversely, suppose the 
points Ax, A 3„ are divided into a set D of 2n points and a set E of n 
points in such a way that for any p ^  3/i there are at least twice as many 
points of D among Ax, . . . , A p as there are points of E. We will show that 
there is then one and only one way of drawing n non-intersecting triangles 
whose starts and middles are in D and whose ends are in E. Let k be the 
smallest integer such that Ak is in E (we have k ^  3 since Ax and A2 must 
be in D to satisfy the hypothesis). Then Ak_2 and Ak__x are the start and 
middle of the triangle whose end is Ak (for otherwise we would get two 
intersecting triangles). Now delete Ak_2, Ak_x, Ak and apply the same 
reasoning to the remaining points. In this way we can successively deter
mine all the triangles, and our assertion is proved.

From this it follows that Gn, the number of ways of grouping the 
points Ax, . . . , A 3„ into n non-intersecting triangles, is equal to the 
number of ways of dividing the points Ax, . . . , A3n into two sets D and E  
(of 2n and n points respectively) so that there are at least twice as many 
points of D among Ax, . . . , A v as there are points of E. If we think of the 
points of D as customers with one-dollar bills and the points of E as 
customers with three-dollar bills, we see that Gn is equal to the number of 
favorable outcomes in problem 83c with the n of that problem replaced by 
In and the m of that problem replaced by n. Thus

G _  2n — 2n +  1 (2n +  / i \ ____ 1 /3/i\
n ~  2 zi +  1 I n /  2n +  1 \ n ) '

We can also write Gn in any of the following forms:

Q (3 n)\ 1 (3n +  1)!
" n\ (2n +  1)! 3n +  1 n\ {In -f- 1)1

=  1 (3n +  U =  1 /  3/1 \
3/i -|- 1 \ n /  n 1/1 — 1/

_  3 /3;i -  1 \ ____ 3__  /3n -  1\
2/i +  1 I « — 1 / n — ll / i — 2/

84c. Denote by Sn the number of different ways of decomposing a convex 
2/i-gon into quadrilaterals by means of diagonals which do not intersect 
within the 2/i-gon.9 It will be shown below that Sn+1 =  Gn; by virtue of

part b, we then see that Sn = ^ ^  j{ In  — 1).

8 Following the solution to problem 52 it is easy to show that such a decomposition 
will involve n — 1 quadrilaterals and that n — 2 diagonals will be used in the decomposi
tion. It follows from this that it is impossible to decompose a (2n +  l)gon into 
quadrilaterals by means of diagonals which do not intersect within it.
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The proof that 5’ri+1 =  Gn is carried out in the same way as the 
proof that Tn+2 = Fn (see the solution to problem 54). First of all we 
derive a relation which allows us to determine Gn from the values of 
Gx, G2, G3, . . . , Gn_x then we show that the numbers Qn = Sn+X satisfy 
the same relation, and that Q1 = Gx, after which the equality ,S,n+1 =  Gn 
follows immediately.

Let us turn to the derivation of the relation connecting Gn with the 
numbers Gx, G2, G3, . . .  , Gn_x. Denote the 3n points treated in problem 
84b in counterclockwise order around the circle by Ax, A2, A3, . . . , A3n. 
Suppose we have an admissible division of Ax, A2, • • ■ A3n into triangles; 
i.e., one in which no two triangles intersect. Consider whichever one of the

Fig. 66

n inscribed triangles with vertices at these points has Ax as a vertex. It is 
clear that the second vertex Ak of this triangle (that is, second with respect 
to the order Ax, A2, . . . , A3n) must be one of the points A2, A5, Ae, . . . , 

. . .  , A3n_x. For otherwise the number of vertices within the arc 
cut off by Ax, Ak would not be a multiple of 3. Hence the triangles with 
vertices on that arc could not lie entirely on the same side of Ax, Ak, 
and so one of them would have to cross it. Suppose for example that 
the second vertex is the point A2, then the third vertex must be one 
of the points A3, A6, Ag, . . . , A 3l, . . . , A3n. If the third vertex is the 
point A3i (fig. 66a), then the side A 2A3l of the triangle in question will 
cut off an arc inside of which are located 3(/ — 1) of our points (the points 
A3, A4, Ar0, . . . , ^ 3i_!) and the side A3lAx will cut off an arc inside of which 
arc located 3{n — I) of the points (the points A3U1, A3l+2, . . . , A3n). We 
obtain all admissible divisions involving the triangle AxA2A3l by com
bining each of the Gt±x admissible divisions of A 3, A4, . . . , A3l+1 with 
each of the Gn_t admissible divisions of A3l+X, A3l+2, . . . , A3n. Conse
quently, the total number of admissible divisions involving the triangle 
AXA2A3 is Gl_x Gn_L. (Here we are making the convention that G0 =  1.)
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Inasmuch as / can take any of the values 1, 2, 3, . . . , n, the total number of 
admissible divisions in which Ax and A 2 belong to the same triple is 
equal to

Gn_! +  GxGn_2 + G2Gn_ 3 +  • • • +  Gn_2G1 +  Gn_x

(the first and last terms correspond to the cases / =  1 and I = n; these 
terms are obviously equal to Gn_x). If the second vertex of the triangle 
containing Ax is A5, then the third vertex can be any of the points Ae, A9,
. . .  , A3l, . . . , A3n; we obtain all admissible ways of dividing the 3n points 
into triples, one of which is (Ax,A5,A3l) (fig. 66b), by combining the Gx =  1 
ways of dividing the 3 points A2, A3, At cut off by the side AXA5 into 
admissible triples with the Gt_2 ways of dividing the 3(1 — 2) points 
A6, A7, . . . , A3l_x cut off by the side A5A3l into admissible triples and the 
Gn_, ways of dividing the 3(n -  I) points A3l+1, A3l+2, . . . , A3n cut off by 
the side A3lAx into admissible triples; therefore the total number of ways of 
dividing the 3n points into admissible triples one of which is (Ax,A5,A3l) is 
equal to G ^ G ^G ^ .  Letting / take successively the values 2, 3, 4 
we obtain the sum

G\(Gn_2 +  GxGn_3 + G ^ ^  +  • • • +  Gn_3Gx +  Gn_ <>)

for the total number of ways of dividing the points into admissible triples 
in such a way that the second vertex of the triangle containing Ax is A5. 
Continuing to argue in this manner, we find that the number of ways of 
dividing the 3n points into admissible triples such that the second vertex 
of the triangle containing Ax is A8 equals

Gz(Gn_3 +  GxGn_i +  • • • +  Gn_iGx +  Gn_a),

etc. The number of ways of dividing the 3n points into admissible triples 
in such a way that the second vertex of the triangle containing Ax is /l3n_4 
equals Gn_2(Gx +  Gx), and finally, the number in which this vertex is 
A3n_x equals Gn_x. Therefore we obtain the following general formula for
G„:10

Gn =  Gn_x +  GxGn_ 2 +  G2Gn_3 +  • • • +  Gn_2Gx +  Gn_x 
+  Gx(Gn_2 + GxGn_3 +  • • • +  Gn_3Gx +  Gn_2)
+  Gz(Gn_3 +  GxGn_ 4 +  • • • +  Gn_4Gx +  Gn_3)

+  Gn-3(G2 +  GXGX +  G2) +  Gn_2(Gx +  Gx) +  Gn_x.

10 By putting G0 =  1 and using the summation sign, this formula can be abbreviated 
as follows:

n — 1 n — i — 1

i = 0  j = 0  i+j + k = 7i—l
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This is the relation we wanted to obtain. Using it and taking into account 
the fact that Gx =  1 {Gx is the number of ways of dividing three points 
into triples, which can obviously be done in only one way), we can 
successively compute all the values of Gn; in particular, it follows from 
this that

G2 = Gx +  Cj +  Gx =  3,
G3 =  G2 +  G1G1 +  G2 +  G1(G1 Cj) +  G2 

=  3 +  1 • 1 +  3 +  1 • (1 +  1) +  3 =  12,
Gi = G3 H- GxG2 +  G2G, +  G3 -\-

+  G1(G2 +  G1G1 +  G2) +  G2(G1 +  Ĝ ) +  G3 
=  12 +  1 • 3 +  3 ■ 1 +  12 +  1 • (3 +  1 • 1 +  3) +

+  3 • 1(1 +  1) +  12 =  55,
etc. (All these values can also be obtained from the formula for Gn which 
was derived in the solution to problem 84b.)

Let us now derive a similar relation connecting Sn+1 with Sn, Sn_u 
Sn_2, . . .  ,S 2. Let A1A2 • • • A2nA 2n+1A 2n+2 be a convex (2n +  2)gon 
(fig. 67); for any decomposition of the {In +  2)gon into quadrilaterals, 
consider the quadrilateral which contains the side AXA2. The third 
vertex of this quadrilateral (that is, third with respect to the order Ax, 
A2, A3, . . . , A2n+2) must be one of the points A3, A3, A7, . . . , A2n+1 (an 
even-numbered vertex of the (2n +  2)gon could not be the third vertex 
of this quadrilateral, since otherwise the diagonal joining the second and 
third vertices would cut off from the (2n +  2)gon a polygon with an odd 
number of sides, and such a polygon cannot be divided into quadrilaterals 
by nonintersecting diagonals; see footnote on page 191). If this third 
vertex is A3, then the fourth vertex must be one of the points A4, Ae, 
Aa, . . .  , A2n+2; the total number of decompositions of our (2n +  2)gon 
in which the quadrilateral AxA2A3A2l occurs is since
the sides A3A2l and AxA2l, respectively, cut off a 2(/ — l)gon and a 
2{n — I +  2)gon from the (2n +  2)gon (see fig. 67). It follows from this



190 S O L U T IO N S

that the total number of decompositions in which the third vertex of the 
quadrilateral containing AXA2 is A3 equals

Sn +  S2Sn_x +  S3Sn_2 +  • ' ‘ +  Sn_xSt +  S n.

It can be proved in the same way that the total number of decompositions 
in which the third vertex is A-a equals

+  S2Sn_ 2 +  • • • +  Sn_2S2 +  Sn_x), 

the total number of decompositions in which this vertex is A7 equals 

SsiSn- 2 +  S2Sn_3 +  • • • +  Sn_3S2 +  Sn_2), 

etc.; the number of decompositions in which this vertex is A2n_3 equals

Sn-2.(S3 +  S2S2 +  S3); 

the number of decompositions in which this vertex is A2n_t equals

Sn-i(S2 t  S^),

and finally, the number of decompositions in which this vertex is A2n+1 
equals Sn.

We obtain from this the following formula for Sn+1:u

Sn+1 =  Sn +  S2Sn_! +  S3Sn_2 +  * ‘ • +  S ^ S z  +  Sn 
+  s2(sn_! +  S2S„_ 2 +  ■ ■ ■ +  Sn_2S2 +  Sfi_1)
+  S3(Sn_2 +  S2Sn_ 3 +  • • • +  s„_2)
+ ..............................................................
+  Sn_2(S3 +  S2S2 +  S3) +  Sn_i(S2 +  S2) +  Sn.

This is the formula we required. Using this formula and taking into 
consideration that S2 — 1, we can compute S successively for all values of 
n; in particular, for n =  3, 4, 5 it follows from this that

S3 — S2 +  S2 +  S2 — 3,

S4 — S3 +  S2S2 +  S3 +  S2(S2 +  S2) +  S3 

=  3 +  1 • 1 +  3 +  1 • (1 +  1) +  3 =  12,

S„ S4 +  S2S3 +  S3S2 +  S4 +  S2(S3 +  S2S2 +  S3)

+  S3(S2 +  s 2) +  s 4 

=  12 +  3 +  3 +  12 +  (3 +  1 q- 3) +  3 • (1 +  1) +  12 =  55.

11 By putting =  1 and using the summation sign, we can abbreviate this formula 
as follows:

n n—i+1
•Sn+l = 2  2  S j S j S n - f - j + 2  ~  ^  S f S j S h .

i = 1 j=l  i+j+k=n+2
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Note that if we denote Sn+1 by Qn, the relation just derived assumes 
the following form:

Q n  =  Q n —1 “ T  Q l Q n - 2  +  Q l Q n - 2  +  '  '  ’ +  Q n - i Q l  +  Q n - 1  

+  Q l i Q n - 2  ~ r  Q l Q n - 3  +  ‘ ‘ +  Q n s Q l  +  Q n - 2)

+  Q ^ . Q n —3 +  Q l  Q n —1 +  ‘ +  Q n - 3 )

+ ...........................................

+  Q n s ( Q 2  +  Q l Q l  +  Q  2 )  +  Q n - 2 ( Q l  +  Q l )  +  Q n - 1 -

This relation is the same as the relation which was obtained above for the 
values of G„ (see p. 188). Since, furthermore, Qx = S2 =  1 =  Gx, the 
successive computation of the values of Qn according to our formula for 
n =  2, 3, 4, . . . will give exactly the same results as are obtained in the 
successive computation of the values of Gn\ in other words,

that is,
Q n  =  G n>

=  Q n - 1  =  G n- l -

This is the answer to our problem.

Remark. Problems 54 and 84b are special cases of the following more 
general problem.

kn points on the circumference of a circle are given. In how many ways 
can these points be divided into n groups of k points each in such a way that the 
sides of the n inscribed A>gons determined by these groups of k points do not 
intersect each other?

This general problem can be solved in exactly the same way that problem 
84b was solved; the solution differs only in that it is based not on problem 84c 
but on the generalization mentioned in the remark following the solution to 
problem 84c. The required number of ways is

1 /Ati\ 1 Ikn + 1\ (kn)l
{k — 1)« -P 1 \ n / kn + 1 \ n / «! [(t -  1)« + 1]!

Similarly, Euler’s problem and problem 84c are special cases of the following 
problem:

In how many different ways can a convex [(A: — 2)n + 2]gon12 be decom
posed into &-gons by means of diagonals which do not intersect inside the 
[(£ — 2)« + 2]gon?

12 It is not hard to see that for m ^ (k — 2)n + 2 there is no way of decomposing a 
convex m-gon into A-gons with diagonals which do not intersect within the m-gon. 
This follows, for example, from the fact that if an m-gon is decomposed into n k-gons, 
the sum of the angles of the m-gon must equal the sum of the angles of the A-gons, that is, 
n times the sum of the angles of a k-gon, whence (m — 2)180° = n- {k— 2)180°, 
m = {k -2 )n  +  2.
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As in the solution to problem 53b and 84c, this problem can be reduced 
without difficulty to the solution of the above problem. Using the answer given 
above to the generalized version of problem 84b, we find that the required 
number of ways is

1 /(* + 1M [(* + 1)/*]!
kn + 1 \ n ) n\ (Jkn + 1)! '

This result is a generalization of the results found in the solutions to problems 
53b and 84c.

85. We proceed at once to the solution of part b, since part a is the special 
case k =  0. If we denote a winning card by W and a losing card by L, 
then the experiment under consideration consists of choosing at random

(
YYi -(- 77 \

I sequences which can be formed with m W ’s and

n L’s. Let 5 be the set of all such sequences. A favorable outcome is a 
sequence a with the property that at exactly k places in it, there is a 
negative amount of money in the bank. Let Sk be the set of all such 
outcomes. Then clearly S = S0 u  Sx u  S2 u  • • • u  S.m+n—l' We are
going to show that #  Sk is independent of k, i.e., # S 0 —# S 1 — • • • =

# S k
#5’m+n_1. It then follows at once that the desired probability pk =  —— =  

1 # S

m +  n
To prove th a t# ^  is independent of k, we introduce an equivalence 

relation (see footnote, p. 121) into the set S  as follows. Two sequences 
cr, and cr2, are called equivalent if they differ only by “cyclic permutation” ; 
i.e., if cr2 can be gotten by moving a block of letters from the beginning 
of cr, to the end. For example, the sequences (WLWWL), (LWWLW ), 
( WWLWL), ( WLWLW), and (LWLWW) are cyclic permutations of each 
other. It is easily seen that this is indeed an equivalence relation, and 
therefore S  is partitioned into equivalence classes as explained on p. 121. 
Thus in the case m — 3, n — 2, the five sequences given above form one 
equivalence class. We will show that when m and n are relatively prime, 
each equivalence class consists of m +  n sequences, one of which is in 
S0, one in Sv  and one in S2, • • • , and one in Sm+n_i. In the above example 
(iWLWWL) is in Sv {LWWLW) in Sa, {WWLWL) in S0, {WLWLW) in 
S2, and {LWLWW) in S4.

To make the idea of the proof intuitively clear, it is convenient to 
represent our sequences geometrically in much the same way as in problem 
83. Starting at the origin A0 we construct a pathF =  A0A1A 2 • • • Am+n 
by moving one unit horizontally whenever a winning card is turned over, 
and one unit vertically whenever a losing card is turned over. For ex
ample, when m — 3, n =  2, figure 68a shows the path corresponding to 
the sequence cr =  {WLWWL).
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Fig. 68

The possible outcomes of the experiment are thus represented by 
paths from (0,0) to (m,n), composed of m horizontal and n vertical unit 
segments. Now suppose o is in Sk\ we want to see what geometric 
condition the corresponding path P will then satisfy. Let Ai+j = (i,j) 
be any point of P. Then the amount of money in the bank at the (/ +  y')’th 
stage of the game is —ai +  bj, since i people have withdrawn a dollars 
each, and j  people have paid in b dollars each. Thus the condition for 
the bank to contain a negative amount of money at this stage is that 
bj <  ai, or in other words

j ' a _  n
i b m

(remembering that am =  bn by hypothesis). Geometrically, this says that 
the slope of A0Ai+j is less than that of A0Am+n, so that the point Ai+j is 
below the line A 0Am+n. Thus the paths P corresponding to sequences 
a in Sk are those having exactly k vertices below the line A0Am+n. (By 
the “vertices” of P we mean the points A0, Ax, . . .  , Am+n; these need 
not be corners.)

Now let cr0 be a given sequence, and let P0 =  A0A1 ■ • • Am+n be 
the corresponding path.

Extend P0 to a path P' = A0A1 ■ • • Am+n Am+n+1 ■ ■ ■ A 2m+ 2n_i of 
length 2m +  2n — 1 by drawing a path congruent to A0A1 ■ • • ^ m+n_x 
with its initial point at Am+n. (In figure 68b this procedure is illustrated 
for the path of figure 68a.) The paths Px = AtA2 ■ ■ • Am+n+1, P2 =
>̂2/̂ 3 ' ' Ĵm+n+ 2’ ’ ^m+n-1 ^m+n—1 ^m+n ■//̂ 2m+2n—l Correspond
to the cyclic permutations of the sequence cr0.
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Therefore, what we are trying to prove can be interpreted geometri
cally as follows: For each k (0 ^  k in 4- n — 1), we can find one of 
the paths Pt with exactly k vertices below the chord AtAt+mJ_n joining its 
endpoints.

To prove this, we first show that for any li <  m +  n, the line joining 
Ah =  (i,j) and Ah+m+n =  (/ -f- m, j  +  n) contains no further vertices of 
P'. For suppose there were such a vertex (r,5). Then by similar triangles, 

s — / n
we would have -----  =  — . Since m and n are relatively prime, this

r — i m
implies that there is an integer q such that s —j  = qn, r — i = qm. 
But since P' has only In — 1 vertical segments, we have s — j  <  2n, 
and since s > 0, j  <  n, we have s — j  > —n. Thus the only possible 
values for q are q =  0 and q =  1. If q — 0, then (r,s) — (i.j), while if 
q =  1, then (r,.y) =  (/ m, j  -\- n). Thus (r,j) cannot be distinct from 
Afo and Ajl_f_mj_n.

Now draw a line / parallel to A0Am+n and situated to the right of all 
the points of P' (fig. 68c). Move / to the left until it first touches P ' . Since 
/ is parallel to A0Am+n, it will at this moment pass through two vertices 
A p and A p+m+n, and as shown above, will contain no other vertices of 
P'. The path Pv corresponds to an outcome in Sq, since there are no 
vertices below A pA p+m+n.

Let / continue moving to the left until it strikes another pair of 
vertices AQ, Aq+m+n. This time the path PQ corresponds to an outcome in 
Sv for PQ contains one and only one of the vertices A p, Ap+m+n. Indeed, 
if A p is not a vertex of Pq, then p < q, so that q < p Jr m Jr n < q - \ -  
m +  n, showing / l ))4_„!+n is a vertex of PQ. This reasoning is reversible.

As / continues moving to the left it strikes another pair of vertices 
At, Ar+m+n. The path Pr corresponds to an outcome in S2, for (reasoning 
as above) it contains one of the vertices Ap, A p+m+n and one of the vertices 
A,,, Aq+m+n. Proceeding in this way we get for each k, 0 sS k ^  m +  
n — 1, a path Pt with exactly t vertices below the chord AtAt+m+n.

This shows that each equivalence class of sequences has m +  n 
members, one in SQ, one in 51? . . . , and one in Hence #^0 =
#S!  =  • • • = # 5 'm+n_1, which is what we wanted to prove.

V II. EX PERIM EN TS W ITH IN FIN ITELY  MANY 
OUTCOM ES

86. Of any six consecutive integers, one is divisible by 6, one gives a 
remainder of 1 upon division by 6, one gives a remainder of 2, one gives a 
remainder of 3, one a remainder of 4, and one a remainder of 5. Therefore,
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of any six consecutive integers, exactly two are relatively prime to 6 
(those which give remainders of 1 and 5 upon division by 6). Let N be any 
positive integer and represent it in the form N = 6Q -f R. Since the 
integers from 1 to Q split into Q groups of six consecutive integers each, 
exactly 2Q integers from 1 to 6Q are relatively prime to 6, and of the 
next R integers, at most two can be relatively prime to 6 (since R is at 
most 5). Thus a total of 2Q +  r integers from 1 to N are relatively 
prime to 6, where r is 0, 1, or 2. Consequently, the probability that a 
number selected at random from the positive integers up to N is relatively 
prime to 6 equalsP{N) = (2Q +  r)/N =  (2Q -|- r)j{6Q +  R). As jV — oo, 
this expression approaches the limit 2/6 =  1/3. Therefore the probability 
that a positive integer selected at random is relatively prime to 6 equals I /3.

The probability that at least one of two integers selected at random 
from the integers from 1 to N  will be relatively prime to 6 is equal to the 
probability that the first integer drawn is prime to 6, plus the probability 
that the second integer drawn is prime to 6, minus the probability that both 
are prime to 6; that is,

2P(N) -  P(N)2 = P(N)(2 p m  =
(2Q + r)(\0Q + 2R -  r) 

(6g +  R)2
As A —> oo, this expression approaches the limit 2 • 10/62 =  5/9, which is 
thus the probability that at least one of two numbers drawn at random 
from all positive integers will be relatively prime to 6 (compare with the 
solution to problem 73a).

87a. Thus n2 ends with a I if and only if n ends with a 1 or a 9. Of any 
ten consecutive integers, exactly two have this property, and so the 
required probability is 2/10 =  1/5. We will show that the cube of an in
teger n ends in 11 if and only if n ends in 71. To see this write n in the 
form n =  100  ̂ -f r, where 0 iS r ^  99. Then

n3 =  l,000,000<f +  30,000f2r +  300^r2 -f r».
The first three terms of this expression all end in 00, and therefore the last 
two digits of «3 are the same as those of r3.

If r ends in a 1, so does r3; but if r ends in a 2, 3, 4, 5, 6,7 , 8, 9, or 0, 
then r* ends in 8, 7, 4, 5, 6, 3, 2, 9, or 0 respectively. Thus the only values of 
r whose cubes could possibly end in 11 are 1, 11,21, 31,41, 51, 61, 71, 81, 
or 91. The cubes of these numbers end in 01,31,61, 91,21,51, 81, 11,41, 
and 71 respectively. Thus n3 ends in 11 if and only if n ends in 71. The 
probability of this is 1/100, since one integer in every hundred ends with 71.
87b. It is obvious that the last digit of the 10th power of an integer n 
depends only on the last digit of n. Further, it is easy to verify that 410 and 
610 end in the digit 6 and the 10th powers of the remaining one-digit 
numbers end in figures other than 6 (210 and 810 end in 4’s, 010 =  0, and the 
odd numbers have odd 10th powers). Hence, of any 10 consecutive
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positive integers, exactly two have 10th powers which end in the digit 6. 
Consequently, the probability that the 10th power of an integer selected at 
random will end in a 6 is 2/10 =  0.2.

Since the 10th power of any even number other than a multiple of 10 
ends in a 4 or a 6, and since 42 =  16 and 62 =  36, the 20th power of any 
such number ends in a 6. All other positive integers have 20th powers 
which end in digits other than 6 (they end in either a 0 or an odd 
digit). It follows from this that the probability that n20 ends in a 6 is 
4/10 =  0.4.

Remark. It can similarly be proved that the probability that the 20th 
power of an integer ends in 76 is 0.4, and that the probability that the 
200th power of a positive integer ends in 376 is also 0.4. In this connection, see 
the solution to problem 34 of the book Izbrannye zadachi i teoremy elementarnoi 
matematiki, vol. 1, by D. O. Shklyarskii, N. N. Tschentsov, and I. M. Yaglom.

88 .
rt n(n — 1)(« — 2 )(n — 3 ){n — 4)(/i — 5)(« — 6)

1 - 2 - 3 - 4 - 5 - 6 - 7  ’
hence the

probability that j  is divisible by 7 equals the probability that the product

n(n — l)(n — 2)(«— 3)(« — 4)(n — 5)(n — 6) is divisible by 49. But the 
latter can occur only if one of the seven factors is divisible by 49, that is, if n 
gives a remainder of 0, 1, 2, 3, 4, 5, or 6 upon division by 49. Of any 49 
consecutive integers, exactly seven satisfy this condition. It follows from 
this that the required probability is 7/49 =  1/7.

The probability that ^  is divisible by 12 is the same as the probabil

ity that the product n(n — l)(n — 2)(n — 3)(/j — 4)(« — 5)(« — 6) in the 
numerator is divisible by 12 • 2 • 3 • 4 • 6 =  64 • 27. Of any seven consecu
tive integers, at least two are divisible by 3; the product thus is divisible by 
27 if and only if another factor of 3 appears in it, that is, if one of the factors 
is divisible by 9 or three of the seven factors are divisible by 3. But the 
latter case is included in the former, since of any three consecutive 
multiples of 3, one has to be a multiple of 9. Consequently, the product 
n(n — l)(/2 — 2)(n — 3)(« — 4)(n — 5)(n — 6) is divisible by 27 if and 
only if n has the form 9k +  r, where r = 0, 1, 2, 3, 4, 5, or 6.

Furthermore, of our seven consecutive integers, either n — 1, n — 3, 
and n — 5 are all divisible by 2 or else n, n — 2, n — 4, and n — 6 are. 
In the first case, of the three consecutive even numbers n — 1, n — 3, and 
n — 5, either n — 3 is divisible by 4 or both rt — 1 and n — 5 are divisible 
by 4. If n — 1 and n — 5 are divisible by 4, then one of these two numbers 
has to be a multiple of 8; hence, if n — 1 is divisible by 4 (that is, n has the 
form 4/ +  1), then our product will be divisible by 2 • 4 • 8 =  64. If 
n — 3 is divisible by 4, then in order that our product be divisible by 64,
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it is necessary that n — 3 be divisible by 16, that is, that n have the form 
16/ +  3. Finally, if n, n — 2, n — 4, and n — 6 are divisible by 2 (that is, 
if n = 21 is even), then two of these four consecutive even numbers will 
have to be divisible by 4. This means that n(n — 2)(n — 4)(n — 6) is 
divisible by 2 • 2 • 4 ■ 4 =  64 (it is easy to see that in this case it is even 
divisible by 128).

Thus, n{n — l)(n — 2){n — 3)(n — 4)(n — 5)(n — 6) is divisible by 
64 if and only if n has the form 4/ +  1 or 16/ +  3 or 21, or in other words, 
if and only if n has the form 16/ +  s, where s — 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 
12, 13, or 14.

Thus, is divisible by 12 if and only if n  has the form 9k +  r,

where r  can take any of the seven values listed above, and simultaneously 
has the form 16/ +  s, where s can take any of the 13 values listed above.

which gave any of 7-13 =  91 remainders upon division by 9 • 16 =  144. 
For example, if n gives a remainder of 8 upon division by 16 and a remainder 
of 5 upon division by 9, then n has to have the form 144m -j- 104: of the 
numbers of the form 144m -j- t, where t =  8, 24, 40, 56, 72, 88, 104, 120, 
136, only the numbers of the form 144m +  104 give a remainder of 5 
upon division by 9. This is a special case of the Chinese remainder theorem: 
if dY and d2 are relatively prime integers and 0 ^  r1 <  d1 and 0 < r2 < d2, 
then there is exactly one nonnegative integer less than dxd2 which gives a 
remainder of rx upon division by dl and a remainder of r2 upon division by

It follows from this that the required probability is 91/144 0.63.
89. The first five powers of 2 are 2, 4, 8, 16, 32. Since 25 =  32 has 2 for 
its last digit, 26 =  2 • 25 has 4 for its last digit, 27 =  2 • 26 has 8 for its 
last digit, 28 =  2 • 27 has 6 for its last digit, etc.; thus, the final digit 
of the successive powers of 2 keeps repeating cyclically in groups of 
four: 2, 4, 8, 6, 2, 4, 8, 6, . . .  . Consequently, of any four consecutive 
powers of 2, exactly one ends in a 2; this means that the probability 
that 2" ends in a 2 is 1/4 =  0.25.

Now let us compute the last two digits of the successive powers of 2:

(this is not hard to do, since it suffices each time to double the last two- 
digit number of the sequence and then, if the result is a three-digit number, 
to discard the hundreds-digit). Thus we see that 222 is the first power of 2 
after 22 =  4 which ends in the figures 04. From there on the sequence 

1 See, for example. Hardy and Wright, op. cit., p. 95.

Accordingly, the values of n for which

02, 04, 08, 16, 32, 64, 28, 56, 12, 24, 48, 96, 
92, 84, 68, 36, 72, 44, 88, 76, 52, 04, 08, . . .
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keeps repeating cyclically: 223 ends in the figures 08, 224 ends in the 
figures 16, etc. Thus the 2nd through 21st members of this sequence are 
repeated as the 22nd through 41st members, then as the 42nd through 61st 
members, etc.; that is, they repeat periodically in groups of 20. Further
more, of the 20 powers of 2 from 22 =  04 to 221, only 29 ends in the digits 
12. Thus, of any 20 consecutive powers of 2, exactly one ends in the 
digits 12. Consequently, the probability that 2" ends in the digits 12 is 
1/20 =  0.05

Remark. It can be proved that the last k digits of the number 2n are 
repeated in groups of 4 ■ 5fc_1, starting with the number 2A (see Shklyarskii, 
Tschentsov, and Yaglom, Izbrannye zadachi i teoremy elementarnoi matematiki, 
vol. 1, problem 243).
90. Let q(N) be the number of powers of 2 from 1 to 2y which begin with 
the digit 1. We have to prove that l im ^ ^  q(N)/N exists, and determine 
its value.

Note that there cannot be two different powers of 2 which have 
the same number of digits and which both begin with a 1. If two 
distinct powers of 2 are given, the larger must be at least twice the smaller; 
hence if both have the same number of digits, then the first digit of the 
larger must be at least twice the first digit of the smaller, which means that 
they cannot both begin with the digit 1. Furthermore, the smallest of all 
powers of 2 which have a given number of digits must begin with a 1: 
otherwise we could divide the number by 2 and obtain a smaller power 
of 2 which had the same number of digits (for example, the smallest 
2-digit power of 2 is 16, the smallest 3-digit power of 2 is 128, the smallest 
4-digit power of 2 is 1024, etc.). It is essential to note further that there are 
powers of 2 having any given number of digits: for if 2k is the greatest 
power of 2 which has p digits, then the next power 2fc+1 will have p -+- 1 
digits; consequently (by mathematical induction) for arbitraryp there will 
be />-digit powers of 2.

Now let 2s  be an w-digit number. Then among the first N powers of 2 
there will be one n-digit number which starts with a 1, one (n — l)-digit 
number which starts with a 1, one (n — 2)-digit number which starts with a 
1, etc., and finally one 2-digit number which starts with a 1 (namely, 16). 
Therefore, ^(A0 — n — 1.

If n is the number of digits in the number 2*', then n — 1 is the 
characteristic of the logarithm (to the base 10) of 2y , that is, the inte
gral part of the number log 2y  =  AMog2. In other words, Arlog2 =  
n — 1 +  aiV, where 0 ^  a v <  1, and q(N) = n — 1 =  N  log 2 — <xy . 
This means that

— lim
oo

N log 2 — « y 
N

— log 2 — lim — =  log 2,
,Y - »  oo N x-* oo N
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that is, the probability that a power of 2 begins with the digit 1 is log 2 
0.30103.

91a. The problem can be reformulated as follows: it is required to prove 
that for any positive integer M  there exists an n such that 2n begins with 
the sequence of digits which represents the number M  in the decimal 
notation. This is equivalent to proving that for any positive integer M  one 
can find two positive integers n and k such that

10fc- M  ^  2n <  10fc(M +  1). (1)

For the numbers beginning with the digits of M  are precisely those of the 
form 10kM  +  r, where 0 ^  r < 10fc. Taking logarithms of both sides 
of inequality (1) we obtain the equivalent inequality

log M  +  k  ^  n log 2 <  log (M +  1) +  k. (2)

We will now prove the existence of positive integers n and k which 
satisfy (2).

Mark off on the real line the intervals2 [log M  +  k, log (M + 1) +k), 
where k assumes all positive integral values. All these intervals have the 
same length, namely log (M  +  1) — log M =  log (M  -j- 1 )/M  =  log 
(1 +  1 jM) and all are obtained from the interval [log M, log (M  +  1)) by 
translating it through positive integral distances 1, 2, 3, . . .  . The numbers 
log 2, 2 log 2, 3 log 2 , . . . , «  log 2, . . . form an arithmetic progression; 
we have to prove that at least one of them lies in one of the intervals we 
have marked off.

It is convenient to imagine the real line as being wound around a 
circle of radius 1/277- (that is, of circumference 1). Then points differing by 
a positive integer will coincide and, in particular, all the intervals construc
ted above will coincide (fig. 69). As regards the points log 2, 2 log 2, 
3 log 2, . . ., no two of them will coincide: if the points p log 2 and q log 2 
were to coincide, the difference p log 2 — q log 2 would be an integer r; 
then we would have log 2 =  r/(p — q), where r, p, and q are integers, 
which would contradict the fact that log 2 is an irrational number. 
Consequently, the values of log 2, 2 log 2, 3 log 2, . . . form an infinite 
sequence of distinct points Alt A2, A3, . . . (see fig. 69, where the first 15 
points Au A2, A3, . . ., Au  are illustrated). We have to prove that there are 
points of the sequence Au A2, A3, . . . which fall in the interval /  on the 
circle corresponding to the interval [log M, log (M  4- 1)).

Since there are infinitely many distinct points of our sequence, it is 
possible to find a pair of such points whose distance apart (that is, the 
length of the smaller arc of the circle which has these points as end points) 
is less than any given number. For if the distance between every two

2 By [a , b), we mean the set of all real numbers x such that a <  x <  b.
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points of the sequence were greater than some positive number c, then only 
a finite number of points could be accommodated on the circle. Let A p and 
Ap+q be two points of our sequence whose distance apart is less than 
a — log (1 +  1/M), the length of the interval I. Note that the distance 
between the points A p and Ap+q equals the distance between A P+q and 
A p+2q, between A ̂ 2q and A p+3(l, between A p+3q and A etc. (This follows 
from the fact that (p +  q) log 2 — p  log 2 =  q log 2 =  {p +  2q) log 2 — 
(p +  q) log 2 =  (p +  3q) log 2 — {p +  2q) log 2 =  • • ■ .) Therefore, the 
points Ap, A p+q, A ĵ 2q, A P+3q, . . . are the same distance apart on the 
circle. And since the distance between any two adjacent points of this 
subsequence is less than the length a of the interval I, at least one of any k

consecutive points in this subsequence, where A: is a positive integer such 
that k a >  1, will have to lie in I. (See fig. 69, where one can take, say, the 
points Aly A12, A23, A34, . . .  in the role of the sequence of points A p, 
AP+q, A p+2q, . . .; the first two of these points are represented in the 
figure.) This concludes the proof.

91b. Using the geometric interpretation introduced in part a, we can 
reformulate the problem as follows: what is the probability that a point 
selected at random from the sequence Au A2, A3, . . . will lie in the interval 
I constructed above? We will prove that the desired probability is the 
length a — log (1 +  1 /M) of I. More precisely, let A be a positive integer, 
and let f(N )  be the number of points of the sequence Au A2, . . . , A v 
which lie in I. We shall prove that lim Y_>00 f(N )/N  — a.

Given a positive number e <  £, we know from part a that there 
exist two points A p and A p+q whose (circular) distance d apart is <£. 
For any /, the distance between A { and Ai+q is also d, since the pair (A{ A i+q)
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can be obtained from (Ap,ApX.q) by rotating the circle. Now let n be the 
(unique) integer such that \ / n > d ^  1 l(n + 1). The points Ait Ai+q, 
A i+2q, . . . , Ai+{n_ 1)q are located around the circle at a distance of d from 
one to the next. Therefore the arc A{Ai+q . . . Ai+(n_1)q has length (n — 1 )d, 
and since the circle has a circumference 1, the distance from Ai+(n_1)q to 

is 1 — (n — 1 )d — e. Since d < 1 jn, we have e >  1 — (n — 1 )/n =  1 jn, 
and since d ^  lj(n +  1), we have e si 1 — (n — 1 )j{n +  1) =  2/(n +  1). 
Thus d <  e ^  2d. Now let m be the integer such that mjn ;£ a < 
(m +  1 )/n (note that m < n since a <  1). Then at most m +  2 and at 
least m — 1 of the points At, Ai+q, Ai+2q, . . . , Ai+(n_ 1)q lie in /. For if 
there are k of these points in I, they span an arc cr of length (k  — 1 )d 
contained in I. Consequently

(k — \)d < a <
m k — 1 <

m 1 1
"  d ’

and since
1
- S  n + V a

m +  1 . /  Ik — 1 < --------(n +  1) =  (w +  1) I 1 +  -
n \ n

=  m +  1 +
m 1

Since m <  n, we have (m +  1 )/n ^  1, so that k — 1 <  m +  2. Since 
k — 1 is an integer, this implies k — 1 ^  m +  1, or k < m +  2. On the 
other hand, /  is certainly covered by the arc r obtained from a by adjoin
ing an arc of length d to one of its ends and an arc of length e to its other 
end. Since r  has length kd +  e ^  (k +  2)d, we have

m m 1
(k +  2)d > a > — , or k  +  2 ^ ----

n n d
Since 1 jd >  n, it follows that k +  2 >  m, whence k  ^  m — 1.

Now consider the points Ax, A2, . . . , Anq. These can be divided into 
q sets of the form {Ax, Ai+q, A i+2q, . . .  , Ai+in_1)q} as follows:

■Si — {Ai, A 1+q, A1+2q, . . . , A i+(„_!)„}
S2 = {A2, A2+q, A2+2q, . . . , A2+(n_Dg}

{Aq) A2q, A 2qy . . . , A nq\
We have just shown that each set St contains at least m — 1 and at 

most m +  2 points of I. Therefore there are at least q{m — 1) and at 
most q{m +  2) points of /  among Alt A2, . . . , Anq. The same reasoning 
can be applied to any nq consecutive points Aj+1, Aj+2, . . . , Aj+nq.

For any positive integer N we can write N = snq +  t, where s =  
[Njnq] is the quotient obtained by dividing nq into N, and the remainder 
t satisfies 0 < t < nq. We can then divide the points Ax, A2, . . . , Asnq 
into s blocks of the form Aj+1, Aj+2, . . . , Aj+nq (where j  — 0, nq, 2nq, . . .,
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(s — 1 )nq). Each of these s blocks contains at least q(m — 1) and at most 
q(m +  2) points of I. We do not know how many of the remaining t 
points A snq+1, Asnq+2, . . . , A y are in I, but in any case it follows that 
sq(m — 1) ^  f(N )  ^  sq(m +  2) +  t. Since N  =  snq +  t, we have sq =  
(N — t)jn. Substituting this, we obtain

N  — t N  — t
-------(m — 1) ^  f(N ) '£ -------- (m +  2) +  tn n

or, dividing by N,

\  N  n
< f iN )

N
t \m  + 2 t t 

N / ~~n N  '
Since mjn ^  a < (m +  1)/«, this implies that

N,
a + -

n.
t

As N  -> oo, the quantity t/N  tends to 0, since t remains bounded (t <  nq). 
Hence the left side tends to a — 2/n, and the right side to a +  2/«. It 
follows that for sufficiently large N,

f Wa ---- <  — — <  a +  -
n N  n

or
N

— a
3

<  -  
n

Now for any positive integer n, \jn ^  2/(« +  1). Hence
/ (  N) 

N
— a < n +  1

±5 6d < 6e.

Thus we have shown that for any e > 0, the inequality
f(N )

N
— a <  6e

holds for all sufficiently large N. But this means that
f{N )lim

V —* o o  N
Therefore, the probability that a power of 2 begins with the digits 

which represent the number M  (in decimal notation) is log (1 +  1/M). 
In particular, if M =  1, then we obtain again the result of problem 88: 
the probability that 2” begins with a 1 is log (1 +  1/1) =  log 2.

Remark. It is curious to observe that for any positive integer A whose 
logarithm to the base 10 is irrational (that is, any positive integer other than 
a power of 10) this same expression gives the probability that a power An 
picked at random will begin with the digits which represent the number M. 
The proof of this does not differ essentially from the proof for the case of 
powers of 2.

92* The experiment which consists of choosing two integers a, b with 
1 ^  a, b g; N  has N 2 equally likely possible outcomes (since there are N
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possibilities for a and N  for b). We have to compute the number f(N )  of 
favorable outcomes, i.e., outcomes in which a and b are relatively prime. 
To do this we will first compute the number g{N) of unfavorable outcomes; 
then f(N ) = N 2 — g(N). Let p ltp2, . . .,p m be the primes ^ N ,  arranged 
in increasing order, i.e. 2 =  p1 < p2 < p3 < ■ • • <  p m ^  N. If a and b 
are not relatively prime, then they are both divisible by some piy and 
conversely. Let be the set of all ordered pairs a,b such that both a and b 
are divisible by pt. Then A1 U  A2 U  • • ■ U  Am is the set of unfavorable 
outcomes, and hence g(N) = # (A X U  A2 U  • • • U  Am). We can compute 
this number by the principle of inclusion and exclusion, and for this 
purpose we now calculate the quantities # (A f, # (A { n  A f, # (A t n  Aj 
n  Ajf, etc. By definition # ( A f  is the number of ordered pairs a,b such 
that both a and b are divisible by p t. The number of multiples of p{ 
between 1 and N  is [Njpi]; hence # { A f = [N/pif. Next, observe that 
A{ n  A, consists of ordered pairs a,b such that a and b are multiples of p t 
and pj, i.e., they are multiples of p# ,. Since there are [N/piP^ such 
multiples between 1 and N, we have #{A t n  A0) =  [Njpipff. In exactly 
the same way we see that # (A t n  A, n  Ak) =  [N/p^p^j.]2, etc. Hence, by 
the principle of inclusion and exclusion,

g(N) =
'N l 2
-P2-

+  • • • +
~ N l2
~Pm-

r  jv i 2
-PlPz-

~ N  ' 2 N “ 2

+
N

- P 1 P 3 ' -P m—lP m- -P1 P2P3-

+  (-I)™ -1

Subtracting this from N 2, we get

f(N ) = N2 ~N~ 2 ~N~ 2
+

" N  '
LpJ -P m~ -P1 P2-

+  • • • +

~ N  "|2 
-P1 P2 P3-

+  (-1)™

N 2

-P1 P2  ' ' ’ Pm-

~ N  I 2 
-Pm— lPm-

r  n  "l2
-P1 P2  ' ' ’ Pm-

We must now prove that sN = f/(A0]/^2 tends to a limit as N  -> 00. 
Most of the difficulty in proving this is caused by the brackets in our 
expression for f(N ). Let us denote by h(N) the same expression without
the brackets, i.e.,

w 9 N 2 N 2h(N) =  N 2 ------ - — • 0
Pi Pm

We can divide both sides by N 2

8etting m  ( L - J - U l -
N 2 V Pi2/ \

N 2
P1 P2

P2

+  ■■■ +  ( - ! )"
N2

P1 P2 2 ■■■ Pm



204 S O L U T IO N S

As N  becomes larger, the number of factors in the product increases, 
and since these factors are all <  1, cm decreases. Since cm >  0 it tends to a
limit3

Jim (l -  —
m— x  \  Pi ,

We introduce the notation

or more simply , .

f t  V ~ ?P  p r i m  \  y

for this limit, and call it an infinite product.
Thus we have shown that lim^^^ h(N)jN2 =  s exists. Our next 

task is to prove that lim ^^, [f(N) — h(N)]jN2 =  0; we can then add 
these two equations to get lim y^ oafi(N)jN2 =  s. We have

from which it follows that

|/(7V) -  h(N)\ 2S JW2
Pi

N ' 
LP1 P2-

'N
■PiJ
2

+

-  +  | £ "
'Pm*

+  ■ N
Pi ■ ■ ■ Pr,

The right-hand side of (1) is a sum of nonnegative quantities of the 
form (Njr)2 — [N/r]2, where r runs through various products of the 
primes p i,p z, . . . ,p m. The greatest value taken on by r is pxp% • • • pm, 
and this is certainly ^  Nm, since each p % ^  N. Hence we will increase the 
right-hand side of (1) if we replace it by the sum of the quantities (Njr)2 — 
[Njr]2 where r runs through all the integers from 2 to N m. Therefore

\f(N ) -  h(N)| ^

(2)

Now if r > N, we have Njr <  1, and hence [Njr] =  0. If r ^  N, we 
can square both sides of the inequality [N/r] > Njr — 1 (since both sides 
are ^0). This gives [Njr]2 >  (Njr)2 — 2(Njr) +  1, from which we obtain

3 See, e.g., R. Courant, Differential and Internal Calculus, Interscience, New York, 
1937, vol. I, pp. 40-41.
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(N/r)2 — [N jr]2 <  2N/r — 1 <  2N/r. Applying these results to the 
right-hand side of (2), we get

I/(AO -  h(N)\ < y  +  y  +  y ^ ' - -  +  ^  +
A

N +  1

- ( — I\N  -f 21
A

2<  — 
A

Thus

\ f(N)  -  h(N)| 
A2

Now

1 + i  +  i  +  . . .  +  i

- | , + l

-  +  ~ +  2 3 A

+
1

+
1

( N  + 1 y  ( N  + 2Y (Nmf • (3)

U N  1/  \ [ JN  1 +  A j ‘UVAr] + 1 '
The first parenthesis consists of [V-A] terms, all ^1 . Therefore its 

value is ^  [\/A] ^  VA. The second parenthesis has N — [VA] terms, 
all <  1/VA. Therefore its value is <  (A — [V a])/V a <  A /V a =  V a. 
Combining these estimates, we see that

Next note that 

1 1+

<

i + N [ +2 3

1

A
< 2 f N .

(A +  l)2 ' (A +  2)2 (A +  3)2 
1 1

m\2(Am)

+
1

A(A + 1 )  (A -f- 1)(A +  2) (A +  2)(A -f 3) 
1

+  • • • +

1
(Am -  l)Am
1 \ . /  1

+
1

A A -  1/ \A  +  1 A +  2,
1_______1

N m - 1 N
_1____ 1_
A N m

A A

1<  — .

A
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that
Applying these results to the right-hand side of inequality (3), we find

l / ( A0 - » Wl < 2 , 2V-  + 1 _ J L  + 1 .
[ “ *■T * rN* N N 7 ^  N

Since the expression on the right tends to 0 as N  —>- oo, we have

lim /(W )- ' ,(W) =  0,
A'-* oo A

and the proof is complete.

93. Let
'» =  ‘ +  ^  +  ^  +  ' "  +  - a -

Then tn < tn+1, i.e., the sequence {?a, t2, t3, . . .} is an increasing sequence. 
Moreover

<  1 1 +  —  +  • • • +
1

1-2  2-3 ( / I  —  l ) / 7

= 1 + |,4) + (H) +
l

+
ii — 1 n

=  2 -  -  <  2.
n

Thus the sequence {/,,12, t3, . . .} is bounded. Since every bounded 
increasing sequence has a limit,4 it follows that lim ^^, tn =  t exists. 
This means (by the definition of convergence of an infinite series) that

1
1 +  T̂  +  ^  +  ~  +  7̂  +22 32 42 52

converges to t. Since lim ,^^ {t — tn) =  0, we see, furthermore, that

1
+ +

1
+

(n +  l)2 (n +  2)2 (n +  3)2
tends to 0 as n —► oo. Now consider the expression

1

i )
The geometric series

1 — x
=  1 +  X +  x2 +  X3 +

4 See R. Courant, op. cit., pp. 40-41.
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converges for |x| <  1; since 0 <  \ jpf  <  1, we can therefore write

1
J_
22

1

32

1 +  — +  — +  — +  
32 34 36

2 4 1 6 Pm Pm Pm

Multiplying these equations together we get

1

We now multiply the infinite series on the right using the distributive 
law of multiplication.5 Using the fundamental theorem of arithmetic, 
which says that every integer >  1 can be uniquely expressed as a product of 
powers of distinct primes,6 we get

where the right-hand side is the sum of the squares of the reciprocals of 
those integers whose prime decomposition involves only px, . . . , pm.

5 For a proof that this law is valid for infinite series with positive terms, see, e.g., 
K. Knopp, Theory and Application o f Infinite Series, London, 1928, pp. 146-147.

8 For a proof, see, e.g., Hardy and Wright, op. cit., p. 3.
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The set of such integers includes the numbers 1, 2, 3, 4, 5, ,m and also
includes some integers >m.

Therefore

— l + 7 ^  +  7 ^ + ' ' - + <
m

+  -  +  - =  22 32
Since l im ^ ^  tm = t, we have

lim
771 00

But we already proved that

=  t.

=  s.

Hence s =  1 /t.
This fact can be used to compute s to within 0.1. For we have

t n< 1 + -5 + —  +  —  +  —  +  
2 -3  3 -4  4 -5

+
1

(n — l)n

> - ! )  +
4 5/

+
n — 1

= 1 + i + i _ i = Z _ i < Z .
4 2 n 4 n 4

Since this holds for alln, t ^  7/4, and therefore s = l/t ^  4/7 =  0.571 
On the other hand

t >  1 +  — +  —  
22 3 -4 +  r ^  +  ' " + i r ^

i +  i +  ( i _ r , +
4 \3 4/ + l n

=  l +  -  +  -  — — =  - .  
4 3 12 2

Therefore s =  l/t <  2/3 =  0.666 • • • . Combining these estimates we 
see that 5 at* 0.6 with an error of less than 0.1.
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Remark. It can be shown7 that 1 + + Ti + Ti + ' ' ' = T2 ■ Thus
s = 6/7J-2 = 0.608 • • • . The identity 77

can be used to prove that there are infinitely many primes. For if there were 
only a finite number of primes, then the left-hand side would be a rational 
number, whereas n2 is known to be irrational (see, for example, Hardy and 
Wright, An Introduction to the Theory of Numbers, Oxford, 1960, p. 47). Of 
course there are much simpler proofs of the infinitude of the primes; the above 
is an example of cracking open a walnut with a sledgehammer.

94. Denote the first m primes by plt p2, . . .  , pm. We will choose the value 
of m later. By the remark made at the end of the solution to problem 13, 
the number of positive integers < N  which are not divisible by any of the 
primes p l t . . . , p m is

~N~

-Pi- -Pi-

~N~
+

" N  "
+  ■ • +

N
-Pm- LP1P2J -Pm—lPm

N N

LP1 P2 ' ' ' P n J

The primes p  such that pm < p N  are not divisible by p lf . . .  ,p m 
and are therefore counted in the above expression. Since there are 
tt(N) — m such primes p, we have

n(N) < m +  N — ~ A " ~ J V "

-PV - P m -
+  • • • +  ( - l ) m

N
-Pi ' ' ' Pm-

• ( 1)

On the right-hand side of (1) there are m
+

m
+  ••• +

=  2™ -  1 brackets, of which +  ( j j  +  (™) H----- ---  2™-1

are preceded by minus signs. Now suppose we remove all the brackets in 
(1). Since [a] 5S a for any number a, the positive terms will be increased. 
And since [a] > a — 1 each negative term will be decreased by at most 1. 
Therefore

77(A) ^  m +  2™-1 +  N -

+  ••• +  ( - !  r

=  m +  2m~1 +  N il

N N  N  

Pm P1 P2Pi
N

Pi • • - Pm

PJ \  p J  \

7 See, for example, K.nopp, op. cit., p. 237 or Volume 2 of this book.



210 S O L U T I O N S

Since m ^  2m_1, we have

7t(N) ^  2m + N i l  - - V l  -  — 
\ p j  \ p2

and therefore

i - i
Pin

7T(N) 
N

Now we choose m in such a way that as N  tends to infinity, m also 
tends to infinity, but 2mjN —*■ 0. For example, such a choice of m would be 
m =  [log8 \f~N] (for we then have 2m/iV ^  2log* = s/N/N =  11%/N,
which tends to 0 as N  —*■ oo). To complete the proof we need only show
that

Pi' ' P‘2.
=  0.

By the formula for the sum of a geometric progression, we have

i - i
P

>
„fc+i

11 -  -  
P

= . + i + i +
P P

where k is any positive integer. Therefore

1 1
_1_
P2

1
>  I 1 + ~  +  "1  +

Pi Pi

x | l - | ------ 1 i +  ' ■ ■  1
Pi Pi Pz

1 +  —  +  —  +  • • •  +  
Pm Pm $Pill •

Expanding this last product we obtain a sum of fractions all having 
numerator 1 but having various integers for their denominators. If k is 
large enough (e.g., k =  m will do), every integer sSm will appear as one of 
these denominators, because every integer ^ m  can be factored into a 
product of powers of p}, p2, . . . , pm. Therefore

2 3 4 m

and so

(2)
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Now as m —> oo, the quantity 1 +  £ +  J -f • • • +  \(m tends to infinity. 
Because

'3' +  i > 4  +  4  — i

5 + H H 8 > 8 + l  +  H | - |  

e +  lb +  A  +  lit +  1 3  +  A  +  is "T A  >  A  —  h  e t c -

Thus if m ^  2r, then
r terms

1 +  i  +  ' ' ‘ H---- > l + ’2 +  i  +  ' , ,  +  i ' = l + r )m 2
and this tends to infinity as r —> oo. It follows that l im ^ ^  1/(1 +  |  +  
• • • +  1 /m) =  0, and by (2) this implies that

lim ( l  -  - ) ( l  -  -
m-+ oo \  p f  \  p 2.

completing the proof.

=  0,

Remark. In volume 2 it will be shown that there are two positive constants 
A and B such that

N N
A -----7-. < v{N) < B :log N " log N ’

This is a stronger result than what we have just proved, for it implies that

7t(N) B
N log N

and clearly Bjlog N  —»> 0 as TV —> oo.

V III. EX PERIM EN TS W ITH A CONTINUUM  OF 
PO SSIB LE  OUTCOM ES

95. The experiment considered in this problem consists in the first 
person’s arriving at some instant x between 12 o’clock and 1 and the 
second person’s arriving at some other instant y  in that interval. Thus all 
the outcomes are defined by pairs of numbers (x,^), where 0 ^  x <: 1 and 
0 ^  y  ig 1. Considering these numbers as coordinates of a point in the 
plane, we can represent the set of all possible outcomes as the totality of 
all points in or on a square OABC of side 1 (fig. 70). Since x and y  are 
chosen at random between 12 o’clock and 1, the probability that x (ory)
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lies in any given interval of the x-axis (resp. y-axis) is equal to the length 
of that interval (recall that in our case OA = OC — 1). Therefore the 
probability that a point (x,y) lies within any rectangle inside OABC 
is equal to the area of that rectangle. Since any region can be covered 
with a network of rectangles, the sum of whose areas differs from the area 
of the region by an arbitrarily small amount, the probability that the 
point (x,jy) lies in any given region within OABC is equal to the area of 
that region. (This property could, if desired, be taken as the definition of 
the concept “at random” which is involved in the statement of this 
problem.) The favorable outcomes in our problem are those which 
correspond to points (x,y) for which \x — y\ ^  1/4. These points make

y

up the shaded region in fig. 70 bounded by the straight lines MN(x  — y — 
1/4) and JPQ(y — x =  1/4). Here OM =  BN — OP =  BQ =  1/4; con
sequently, area MCN =  area PAQ — 1/2 • (3/4)2 =  9/32, and the 
required probability is area PQBNMO =  1 — area ■ MCN — area 
PAQ =  1 -  18/32 =  7/16.

96. First solution. Let AB be our rod and K and L the two break points 
(fig. 71a). Denote the length of AB by /. All possible outcomes of the 
experiment considered in this problem are determined by the locations of 
the points K and L, in other words, by the two numbers AK = x  and 
A L = y ,  each of which is to be chosen at random between 0 and /. 
Considering these numbers as the coordinates of a point in the plane, we 
can represent the set of all possible outcomes as the totality of all points in 
or on a square OMNP of side / (fig. 71b). As in problem 95, the proba
bility that the point (x,jy) lies in any given region S of this square is equal 
to the ratio of the area of 5 to the area of the entire square. Therefore, 
the problem is to determine the area of the part of the square OMNP 
which consists of the points corresponding to favorable outcomes to the 
experiment.
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In order that the three pieces into which the rod is broken can be 
arranged to form a triangle, it is necessary and sufficient that the length of 
each of these three pieces be less than the sum of the lengths of the other 
two pieces. Since the sum of the lengths of the pieces is /, this condition 
is equivalent to the requirement that each of the three pieces be less than 
//2 in length. Now consider under what circumstances this condition 
could fail to be satisfied.

1. The length of the leftmost of the three pieces will exceed \1 if x  and 
y  are both greater than \1. Such outcomes correspond to points located 
within the small square YRZN of width \1 which occupies the upper 
right-hand corner of the square OMNP (fig. 71b).

y

a. b.
Fig. 71 2 3

2. The length of the rightmost of the three pieces will exceed 11 if x 
and y  are both less than \1. Such outcomes correspond to the points 
located within the small square XRUO of width \1 which occupies the 
lower left-hand corner of the square OMNP (fig. 71b).

3. The length of the middle segment will be greater than 11 if x and y  
satisfy the inequality y  — x > \1 or the inequality x — y  >  \1. The set of 
all points (x,y) for which y — x  =  \ l  is represented in the figure by 
the line X Y and the set of all points for which x — y  = %1 by the straight 
line ZU. The points for which y  — x > \ l  fill the triangle XM Y and the 
points for which x — y  >  \1 fill the triangle UPZ. Thus the unfavorable 
outcomes of the third type correspond to the points within the triangles 
XM Y and UPZ.

Finally, the favorable outcomes correspond to the points within the 
shaded part of the square OMNP (fig. 71b). Since the area of this part 
is one-fourth of the area of the large square, the desired probability 
is 1/4.



214 SOLUTIONS

Second solution. In the first solution we characterized the outcomes of 
the experiment in terms of the numbers x  =  AK  and y  =  AL. Instead of 
these we could have used the numbers x  =  AK and z = KL, where K is 
the leftmost of the two break points (see fig. 71a). It is clear that x  +  z ^  / 
(since / is the length of the entire rod and x  +  z is the sum of the lengths of 
two of the three pieces); therefore, the set of all possible outcomes will 
be represented here by the points in or on the triangle OST bounded by 
the coordinate axes and the straight line x  +  z =  /.

It is easy to see that the probability in the case of such a choice of 
coordinates is again proportional to the area. The set of all favorable 
outcomes is defined by the inequalities x < \l, z < \l, x  +  z >  \l- 
By drawing the straight lines x = \l, z = \l, x  +  z =  \ \  (these are

z

the lines QM, QN, and MN  in fig. 72), we see that the favorable outcomes 
correspond to the points inside the shaded triangle in fig. 72. Since the 
area of this triangle is one-fourth of the area of the entire triangle OST, 
we again obtain the value 1/4 for the probability in question.

Remark. It is instructive to compare this result with problems 27 and 30. 
In problem 27 we showed that the number of solutions of the equation

x +  y +  z =  n (1)
in positive integers is (n — 1)(« — 2)/2. In the first part of the solution to 
problem 30 we showed that the number of these solutions satisfying the in
equalities

<  z, x +  z <  y, y +  z <  x (2)
is (n — 2)(/j — 4)/8 for even n, and (n — l)(/z + l)/8 for odd n. Hence the 
probability pn that a solution of (1) chosen at random satisfies (2) is (n — 4)/ 
4(n —  1) for even n, and ( n - f  l)/4(n —  2) for odd n. In either case pn 
approaches 1/4 as n ro. Now pn can be interpreted geometrically as follows. 
Let the rod AB  of length / be divided into n equal pieces by points A 0 = A,
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A u A2, . . . , A n — B. Then to every solution of (1) there corresponds a division 
of the rod AB  into three non-empty pieces, the break point being chosen from 
A lt A2, ■ . . , An_ v  The solutions satisfying (2) correspond to those divisions 
with the property that a triangle can be formed from the three pieces. Therefore 
if the rod AB  is broken at random into three non-empty pieces, where the break 
points are among A lt A 2, . . . , An_ lt then p n is the probability that a triangle 
can be formed from the pieces. (Here the term “at random” means that all 
solutions of (1) in nonnegative integers are to be considered as equally likely. 
This is not quite the same as saying that the break points are chosen independ
ently and uniformly from A lt . . . , A n_a.) The fact that pn -*■ 1/4 as n °o 
means that in a certain sense, problem 95 can be thought of as a limiting case of 
the “discrete” problem, when the division points are restricted as above. At the 
same time, the solution to the present problem is appreciably simpler than that 
of problems 27 and 30: instead of making complicated combinatorial com
putations, here we need only determine the ratio of the areas of two similar 
triangles. (A similar situation is encountered in many considerably deeper 
questions: in modern probability theory the passage from finite cases to the 
continuous case plays an important role and often allows the theory to be 
simplified considerably, by the elimination of complicated combinatorial com
putations and estimates.)

97. This problem is a generalization of the preceding one. For problem 96 
can be reformulated as follows: what is the probability that none of three 
pieces into which a rod is broken at random will exceed half the total 
length of the rod? In this problem the length \ l  is replaced by an 
arbitrary length a.

As in the first solution of problem 96, we will characterize all possible 
outcomes of the experiment in question in terms of two numbers AK = x 
and AL = y, where K and L are the break points and A is the left end of 
the rod. Then the set of all possible outcomes can be represented as the 
set of all points in or on a square OMNP of side /. The probability that a 
point (x,y) lies within any region R of this square is equal to the ratio of 
the area of R to the area of the entire square.

Let us determine what part of the square is filled by the points 
corresponding to unfavorable outcomes of the experiment. First of all, 
it is obvious that for a <  1/2 all outcomes of the experiment are un
favorable: at least one of the pieces will have to have length greater 
than or equal to 1/2. Let us now consider separately the cases 1/2 ^  a ^  II2 
(fig. 73a) and a ^  1/2 (fig. 73b).

In order that the leftmost piece of the rod have length greater than a, 
it is necessary and sufficient that x > a, y  > a\ the points which satisfy 
these conditions make up the square YRZN of width I — a in figs. 73a and 
73b. Similarly, in order that the rightmost piece have length greater than a, 
it is necessary and sufficient that x < \ — a, y  < \ — a\ these points 
{x,y) make up the square XQUO of width I — a. Finally, the middle
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piece of the rod will have length greater than a if and only if either x  — 
y  > a or y  — x > a; the first condition is satisfied by the points of the 
triangle VMW  and the second by the points of the triangle SPT.

Now we need merely compute the area of the unshaded portion of the 
squares in figs. 73a and 73b. In the first case (fig. 73a) this will consist 
of two isosceles triangles whose legs have length PS — US — YT = 
I — a — 2(1 — 2a) = 3a — I; therefore, the area of the unshaded portion 
is 2 • |(3a — I)2 =  (3a — I)2. In the second case (fig. 73b) we must 
subtract from the area of the square the area of two squares of width 
I — a and two isoceles right triangles whose legs have length I — a;

Fig. 73

therefore, the area of the unshaded portion is I2 — 3(1 — a)2. Divid
ing these areas by /2 (the area of the entire square), we find that the 
probability that none of the three pieces has length greater than a is

0 if 0 2g a < lj3,
\2

l ) if Z/3 ^  a < //2,

f j if 21 ^  a ^  I.

98. Since after a random choice of the three points, the circle can always 
be rotated into a position in which one of the points (say, A) is at a 
preassigned position, we can assume that A is fixed to begin with and that 
only two points are chosen at random. The locations of the points B 
and C will then be determined by the lengths of the arcs AB and AC 
reckoned in a specific direction (say, counterclockwise from A). Now cut
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the circle at the point A and straighten it out into a line segment AA' 
(fig. 74; the fact that both ends of this segment represent the same point 
of the circle is immaterial). For the triangle ABC to be obtuse (that is, for 
the outcome to be unfavorable), it is necessary and sufficient that one of 
the three arcs into which the vertices divide the circle is more than a

A B C A'

Fig. 74

semicircle. Hence after passing from the circle to the segment A A' our 
problem assumes the following form: two points B and C are selected at 
random on the segment AA': what is the probability that none of the three 
pieces into which these points divide the segment is longer than half the 
segment? But we showed in problem 96 that this probability is 1/4.

z

99. Here all possible outcomes to the experiment are determined by a 
triple of numbers (x,y,z), each number being chosen at random be
tween 0 and /, where / is the length of the rod under consideration. By con
sidering these numbers as coordinates of a point in space, we can represent 
the possible outcomes by the points of a cube of side / (fig. 75). Then 
the probability that the point (x,y,z) lies within any given region of the cube
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is equal to the ratio of the volume of that region to the volume of the 
entire cube.

Let us now determine the location of the points which correspond to 
favorable outcomes of the experiment. In order to form a triangle from 
three segments of lengths x, y, and z, it is necessary and sufficient that 
they satisfy the inequalities

x + y  > z, x + z > y, y  + z > x. (1)

But it is easy to verify that the set of all points which satisfy the equation 
x  +  y  =  z constitutes the plane which passes through the points O, E, and 
G, and all points for which x  +  y  >  z will be located on the same side of 
this plane as the point F. Similarly, the set of all points for which x  +  z =  
y  will make up the plane which passes through the points O, B, and G; 
and all points for which y  +  z =  x  will make up the plane which passes 
through the points O, B, and E. Therefore, all points which correspond to 
favorable outcomes of the experiment—that is, to lengths which satisfy the 
inequalities (1)—will be located within the region OBGEF bounded by the 
three planes indicated above and three faces of the cube. Note now that 
the volume of the cube differs from the volume of the solid OBGEF by 
three times the volume of the triangular pyramid EOBA (since the 
triangular pyramids EOBA, GO ED, and GOBC are congruent). The 
volume of EOBA is

P
IE A ■ area OAB = / • U2 = -  ;

6
/3 /3

consequently, the volume of the solid OBEGE is /3 — 3 — =  — ; and the 
required probability is ^ /3//3 =  £. 6 2

100. The experiment here is the same as in the preceding problem. Again 
we represent the possible outcomes of the experiment by points in or on a 
cube OABCDEFG of width /; the probability of any event will be equal to 
the ratio of the volume of the portion of the cube corresponding to the 
outcomes of that event to the volume of the entire cube. Hence we have 
only to determine which points of the cube correspond to favorable 
outcomes of the experiment.

By the law of cosines, in an acute triangle the square of the length of 
any side is less than the sum of the squares of the lengths of the other two 
sides; on the other hand, in an obtuse triangle the square of the length of 
the side opposite the obtuse angle is greater than the sum of the squares of 
the other two sides, and in a right triangle the square of the hypotenuse 
equals the sum of the squares of the legs. Consequently, in order that it be 
possible to form an acute triangle from three segments, it is necessary and 
sufficient that the square of the length of each of the segments be less than
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the sum of the squares of the lengths of the other two segments.1 Therefore, 
the difference between this problem and the preceding one is only that now 
the favorable outcomes are defined not by the inequalities (1) of problem 
99, but by the inequalities

x2 +  y2 >  z2, x2 +  z2 >  y2, y 2 +  z2 > x2. (2)

The equation x2 +  y2 = z2 means that the distance MQ = \jx 2 +  y 2 
from the point M  =  (x,y,z) to the z-axis equals the segment OQ of the 
z-axis (fig. 76a). It is clear from this that all points for which 
will lie on the surface of a cone having the line OD as axis and an angle of 
45° between the axis and the generator; the points for which z2 >  x2 +  y 2

Fig. 76

(these points correspond to unfavorable outcomes of the experiment) will 
lie within this cone. Similarly, the inequalitiesy 2 > x2 +  z2 and x2 >  y 2 +  
z2 define the interiors of two cones having the lines OC and OA as axes 
(fig. 76b). A quarter of each of these cones is located within the cube 
OABCDEFG. They do not cross; the altitude of each of them is /, and 
the radius of the base of each is also / (since the angle co between the 
axis and the generator equals 45°). The volume of a quarter of such a 
cone is

• -  7Tl2- I
3 12

consequently, the volume of the part of the cube which corresponds to the 
unfavorable outcomes of the experiment is 3(vt-/3/1 2) =  -n73/4, and the

1 This condition guarantees that none of the segments will exceed the sum of the 
other two (that is, that one will be able to form a triangle from these segments). For if, 
for example, x2 <  y2 -+- z 2, then certainly x2 <  y2 +  2yz +  z2 =  (y +  z ) 2, which means 
that x < y + z.
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volume of the part of the cube which corresponds to the favorable outcomes 
is P -  7tP/4.

It follows from this that the desired probability is

I3 7rj3
4

I3
1 -  -  =  0.2146___

4



A N S W E R S  A N D  H I N T S

1. 3.
2. 7.
3. 7.

4.  5 + =  15.

5. 8 (in certain special cases there can be less than 8).
6. 30 ways. , ^3 j
7. 22,754,499,243,840 ways (this number equals —

/ 16\  ̂ ^8. | , 1 =  8008 ways.

9. The number of locks required is

!)33 !/

=  462; the number of keys

held by each committee member is -  252.

then e is counted times on the

10. 800.
11a. There are more numbers in which a 1 occurs, 

b. 175,308,642.
12. Show that if an element e is contained in exactly h ^  1 of the sets,

"') ~  ( 2 )  +  ( 3 )  +
right-hand side of the formula. Apply the binomial theorem to show that 
this expression is equal to 1.
13a. 686. 

b. 457.
14. 288.
15. 7142. Prove that the remainders from dividing 2X — x2 by 7 repeat 
periodically in groups of 21 as x varies from 1 to 10,000.
16. 10,153. Prove that x2 +  y 2 is divisible by 7 only when x and y  are 
both divisible by 7.
17. 139 ways. Compute the number of factorizations, counting factoriza
tions which differ in the order of the factors as different (there will be 784 
such factorizations) and then take into account the fact that some of 
these 784 factorizations must be considered as the same.
18. The number of divisors is 60. The sum of the divisors is 62,868.
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19. 473.
20. The coefficient of .y 18 is zero; the coefficient of y 17 is 3420.
21. 12 ways.
22. [nj5] +  1 ways.

23a. j  ways (regarding the notation, see p. 6). To prove this

formula, use the result of problem 22 and the fact that

m
. 2 J

m
~>

i , c - i r

(for m an integer).
f(n +  4)2

b. N
20

ways.

24. 4562 ways. In solving this problem it is convenient to make use of the 
result of problem 23b.
25. [njl] ways.
26. 19,801 solutions.

(n — 1 )(n — 2)
27. --------------  ways.

+  3)2\28a. AM— —— I ways.

/ n2 
b. AM —

\ 12

29. -------- solutions for odd n and — ———------  solutions for even n.
8 8

31a.

b.

In2 +  6/7) / n2\
30. AM— —— I triangles for odd n, and AM— I triangles for even n.

In solving this problem one should use the result of problem 29 and 
consider separately the 12 cases corresponding to the 12 possible re
mainders of n when divided by 12.

(n +  m — 1 
m — 1

32a. Let n be the sum of Ay terms equal to l , k t terms equal to 2, . . . and 
k v terms equal to p, where Ay +  Ay +  • • ■ +  k v sS m (some of the A^s 
may be 0). Put;y =  Ay +  k 2 +  • • • +  k v, y 2 =  A2 +  A3 +  • • • +  k v, . . . ,  
y v =  k p. Then n = y 1 +  y 2 +  • • • +  y v and all the y /s  are ^ m . The 
theorem can be derived easily from this, 

b. Let
n =  yx +  y2 +  • • • +  x m 

be a representation of the number n as a sum of m distinct terms arranged
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in increasing order; then

m(m +  1) , ,
n “ — (*i — 1) +  (xn ~  2) +  • • • +  (xm — in)

=  k0 • 0 +  A.'i • 1 +  k2 ■ 2 +  • • • +  kp ■ p 
m(m +  1)

is a partition of number n --------   . Denoting kr +  k 2 -f- k3 +

• ‘ ' +  k v by y lt k 2 ■T k^ • • • +  k v by y 2, . . . , and k p by y Jt, we obtain

>’i - f  y 2 +  • ■ • +  y„ =  «
m(m + 1) 

2
33a. Represent each term as the product of a power of 2 and an odd 
number, and collect the terms which have the same odd factor.

b. Let the term 1 occur times, and term 2 times, etc., in a 
representation of the number n as a sum of terms not divisible by k. 
Write the numbers s2, . . . in “k-ary form.”
34a. The greatest number of rooks is n ; the number of arrangements is n !.

b. The smallest number of rooks is n; the number of arrangements is 
2nn — n !.
35a. 14; 2n -  2. 

b. 8; n.
36. Use the fact that for even n the union of the white squares is con
gruent to the union of the black squares.
37a. Use the result of problem 35a and compute the number of squares 
which each of the eight bishops controls.

b. The number of arrangements is 2". To prove this, use the result 
of part a.
38a. 1082 =  11,664.

b. 6722 =  451,584.
c. 24 • 2964 =  71,136.

d. (2k) ! 4 k +  r
if n =  4k

(2k) I12
16 k3 +  24A:2 +  \ \k  +  1

if n = 4k +  1.

(2k) !2 (4k2 +  5k +  2)2 if n = 4k +  2. 
(2k) ! (2k +  1)! (16/c4 +  56k3 +  67k2 - 

39a. 16.
33k +  6) if n = 4k +  3.

L \n +  n 2b. -------L 2 J
40a. 9.

f  n +  212
3
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41a. 8 queens.
b. One queen for n — 1 and n = 2, two queens for n =  3, n queens 

for « c; 4. In order to prove that n queens can be arranged in the required 
fashion on an n X  n chessboard (for arbitrary n ^  4), it is sufficient to 
consider only the case of even n and to produce for this case an admissible 
arrangement of the n queens in which the centermost positive diagonal is 
left empty. (The case of odd n can then be handled by adding an extra row 
and column and putting the extra queen on the corner square.) As regards 
even n, it is convenient to consider first the case of n giving a remainder of 0 
or 4 upon division by 6 and then the case of n giving a remainder of 2 upon 
division by 6.
42a. 32 knights.

b. Two arrangements.
43a. Into (n +  l)2 parts.

b. Into 3/j2 +  3 / I+1 parts.
.. , /i2 +  n +  244a. In to ---------------parts.

b. Into n2 — n +  2 parts.
In solving the problem it is convenient to consider in turn byhowmuch 

the number of parts is increased after drawing the second, third, . . . ,  
and /j-th line (or circle).

45a. Into
n3 +  5n +  6 

6
parts. Use the result of problem 44a.

b. Into
n{rP — 3n +  8) 

3
parts. Use the result of problem 44b.

46. In + - ~  3> =  pointi,

47. Into (" ~  IX" ~  W  -  3- +  .12) parts
24

48a. 1296 =  362.
n \n  +  l)2b. -------------

4
49a. 204.

b. I2 +  22 +  32 + ----- b n2 n{n +  l)(2n +  1) 
6

50. n(n -  1)(« -  2)(n3 +  18n2 -  43« +  60) 
720

triangles. This expression is

+  5obtained as the sum
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51. The required number of £-gons is

n(n — k — \)l _  n / n — k — 1 
k \ (n -  2k)\ ~  k \  k -  1

52a. The number of triangles is n — 2.
b. The number of diagonals is n — 3.

53a. In 132 ways. In solving this problem it is convenient to determine 
successively the number of decompositions into triangles of a convex 
quadrilateral, pentagon, hexagon, heptagon, and octagon.

b. The required number Tn of ways is
1 • 3 • 5 • • • (2« -  5) „_________ _̂____ L 2n~z

0 1 ) !
To derive this formula we need only to prove that

2(2n -  3)
7 i + l  •* rrn

One of the ways of obtaining this relation is the following: We express Tn 
in terms of Tn_ ,̂ Tn_2, ■ ■ ■ , T3 in two different ways and derive the 
required relation by equating the two formulas obtained.

r . 1 • 3 • 5 • • • (2n -  1)
54. The required number Fn of ways is ------- -—̂   2n.

To derive this formula it suffices to show that Fn — Tn+2 (see the hint to 
problem 53b).

55a. In
P

+  n ways.

b. The answer to part a must be an integer.

56a. - I—---- ^ " +  p — 4) self-intersecting p-gons.
2 1 p j
b. The answer to part a must be an integer.

57a. 2n.
b. 0 if n > 1, 1 if n =  1.

2n+1 -  1c. ------------.
n +  1

d. 2n- 1«.
e. 0 if n > 1, 1 if n =  1.

(n — 
m

'n +  m +  1\ / n \ fn + m + 1\
* + l  ) -  (fc +  l )  f0r <  " and ( n + i  =

h. 1 for n = 3k, 0 for n = 3k +  1, and — 1 for n = 3k + 2 .
i. 22n.

<2^
J-

f. ( - i r

g-

for m <  n and 0 for m =  n.
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k. ( for even n, and 0 for odd n.

58a. 2" 1 if // >  0, 1 if n =  0. 
I). 2n \
Tlie solutions to these two problems follow easily from the results of 

problems 57a and b.
c. 2"-* +  2(n_2)/2 for n =  8/c, k > 0; 2n~2 +  2(n- 3)/2 for n = 8k +  1; 

2“-2 for n =  8/c ±  2; 2n~2 -  2(n- 3)/2 for n = 8k ±  3; and 2n- 2 -  2<n- 2)/2 
for n =  8/c +  4.

To solve this and the following three problems make use of the 
expansions of (1 +  i)u and (1 — /)” according to the binomial theorem.

d. 2'1"2 for n =  8k or n =  8/c +  4, 2n~2 +  2("~3)/2 for n = 8k +  1 or 
n -  8/c +  3,2"-2 +  2(n~2)/2 for n =  8A +  2, 2"~2 -  2(r- 3)/2 for n =  8A -  1 
or n -  8A -  3, and 2n~2 -  2(n- 2)/2 for n = 8k -  2.

c. 2"-2 -  2<?,̂ 2,/2 for n = 8k, 2n~2 -  2(n- 3)/2 for « =  8A ±  1, 
2"-2 for n — 8/c ±  2, 2'1-2 +  2(,*~3)/2 for /; =  8A ±  3, and 2n-2 +  2(n~2)/2 
for n — 8Ar 4.

f. 2n-2 for n =  8 k  or n =  8A +  4, 2"~2 — 2<n-3)/2 for /; =  8A +  1 or 
n =-= 8A H- 3, 2"~2 -  2(n~2)/2 for =  8A +  2, 2’*-2 +  2(n- 3)'2 for n = 8k -  
1 or n — 8k — 3, and 2'i-2 +  2(n-2)/2 for n  =  8/c — 2.

g. (2n +  2)/3 for /; =  6k, (2n +  l)/3 for n = 6k ±  1, (2n — l)/3 for 
/; =  6k i  2, and (2W — 2)/3 for /? =  6A +  3.

To solve this and the following two problems, make use of the 
expansions of (I +  u))n and (1 +  a»2)n according to the binomial theorem, 
where a> =  (— I -|- i j 3)/2 and a>2 — (—1 — /%/3)/2.

li. (2n -  l)/3 for n =  6k or n = 6k -  2, (2" +  l)/3 for n = 6k +  1 
or n — 6k +  3, (2“ +  2)/3 for/; =  6k +  2, and (2n — 2)/3 forw =  6k — 1.

i. (2n — l)/3 for n =  6A or n =  6A +  2, (2n — 2)/3 for « =  6A +  1, 
(2“ +  l)/3 for/; =  6/c +  3 o r /; =  6/c — 1, and (2n +  2)/3 for/; — 6k — 2. 
59. Use mathematical induction.

60a. (sec problem 57/).

b. (n — in — 1)(/; — m — 2) ■ • • (n — m — A)/A!. For n — m — I ^  k,

this expression equals

62a. 1; 1000; 499,500
1000!

b* A! (1000 - A) !
the 1000th row.

people arrive at the A-th intersection of
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63. Make use of the fact that Bnk is the coefficient of xh in the expansion of 
the expression (1 -f- x +  x-)n.
64. 0.6561 =  (0.9)4. In solving this problem it is convenient to treat all 
the license numbers as four-digit numbers by adding initial zeros where 
necessary and by replacing the number 10,000 by 0000.
65a. 1/360 ^  0.003.

b. 12/360 =  1/30 ^  0.033.
66. 76/30,240 =  19/7560 ^  0.0025. In the solution take into account the 
fact that 495 =  5 • 9 • 11, and use criteria for divisibility by 5, by 9, and by 
1 1 .

67. 0.2.
12!68a.

b.

69a.

1212
66( 2®

0.000054.

-2 )
12®

9 • 8 • 7 • 2® _____
1 • 2 • 3 • 36 ~  6561

0.00137.

1792 0.273.

b 9! _  _560
' (3!)3 ■ 39 _  6561 

9! _  280
C‘ 2 • 4! • 3° 729

0.085.

0.384.

70a. I
b. i.

10
C. 2 1 .

71. Winning three games out of four is more probable than winning five 
games out of eight (the first probability is 1/4 and the second is 7/32).

m \

72a. j J  \k  — 
n +  m 

k
n +  m 

k Use the fact that the sum of the probabilities of no

white balls being drawn, of exactly one being drawn, of exactly two being 
drawn, . . . , and of exactly k being drawn equals 1.

/  2/i — k\

b. 22n. This result can be derived from part a in the same way that 
problem 72b follows from 72a.
74. 1/2. The simplest way to solve this problem is to show directly that
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the number of favorable outcomes is equal to the number of unfavorable 
outcomes (without computing this number).
75a. 5/9. (One can treat the situation considered in this problem as 
having nine equally likely possible outcomes and show that five of them 
are favorable.)

b. 19/27.
c. 1 — (§)n. Here it is easier to compute the number of cases in 

which all n hunters miss.
95

76. —  ^  0.66.
144

77. 13/41. In solving this problem it is essential to note that of the 81 
equally likely possible outcomes if A, B, C, and D made independent 
statements, only 41 are actually possible in this case, by virtue of the 
special character of the statements.
78a. 8/15 0.53.

2 • 4 • 6 • • • (2/i -  2)

79a.

b.
1 - 3 - 5

2n{n \f
(2n)l

b.

0

(2 k)!3
l(4/c)!(k!)2

(2n -  1)

for odd n, 

for even n =  2k.

80a. 1 -  — +  — -  — +  
2! 3! 4! n !

b. As n —> oo, this probability approaches 1 ----- «=* 0.632 (e & 2.718)

is the base of the system of natural logarithms 

81a. m \ {P _  im
0

! m 1

7 Vi - - — + (-ir~l
ml

m 
m - 1

1 - m 1\P

m

b.
\ r /
,77 V

( m\c.
1

0,

r  -

(r -  i r  +  ■

m
2 ! 2’ + 3 13’ -

+ ( - i r ‘C - 1) 4

+ (-irlj
if p < m

(—l) m ! if p =  m
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439,792 
82. -----------

3,628,800
experiment is 9!

0.12. The total number of possible outcomes to the
TO)10! The number of unfavorable outcomes is

10
a% + a, — + aQ —

1 a, —

aw, where

f(10 -  k)\ (10 — k — 1)! (20 -  2A:)(20 -  2k +  1) • • • (20 -  k -  1)

i2 • 9!.

for 1 ^  k ^  9, 

for k - 10.

as the shortest paths joining the intersections (0,0) and (n,m)

83a. (n — m +  1)/(« +  1) for m g  n; 0 for m >  n. This answer can be 
obtained in various ways. , , .

J I  Yl i YtX \First solution. There are a total of I I equally likely possible

outcomes to our experiment. It is convenient to represent these outcomes 
n +  m) 

m
of a network of roads (see p. 18). Using this representation one can show 
for m ^  n the number of unfavorable outcomes equals the number of

( h ~1“ tn\
m 1) ’

a i l 3 V Y < - l  L U  H U -  I I U I M  L I U S .  '

Second solution. Given the answer to the problem, it is not hard to 
verify its validity by mathematical induction.

Third solution. Consider the n +  m arrangements which are obtained 
from a given arrangement by successively moving the first customer to 
the end of the line. Show that for n > m exactly n - m o f  these n +  m 
arrangements have the property that in front of each customer there are 
more people with fives than people with only tens. It will not be hard 
to obtain the answer to the problem from this.

m { m  -  1 ) - - - { m — p ) +— n +  p ^  m ^  pb. 1 for
(n +  l)(n +  2) • • • (n +  p +  1)

0 for m > n + p; 1 for m < p. The solution to this problem can be 
carried out analogously to the first or second solution of part a. 

c. (n — 2m -f 1 )j(n +  1) for n ^  2m and 0 for n < 2m.
The solution of this problem can be carried out similarly to the 

first, second, or third solution of part a, the simplest way being the solution 
analogous to the third solution of part a.
84a. In a division of the 2n points on the circle into n pairs, n points will be 
the first points of the pairs and the other n points the second points. 
Show that in order for the n chords determined by these pairs not to 
intersect it is necessary and sufficient that (numbering the points in the 
order in which they occur around the circle) each point be preceded by at 
least as many points which are first members of pairs as points which are
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second members. By virtue of the result of problem 83a, the answer to 
problem 54 is obtained immediately from this,

Inasmuch as the answer to problem 53b can be derived from the 
answer to problem 54 (compare with the solution to problem 54), the 
reasoning indicated here also solves problem 53b. 

b. The required number Gn of ways is

This result is obtained from the solution to problem 83c in exactly the 
same way as the solution to problem 54 is obtained from the solution to 
problem 83a.

c. The required number Sn of ways equals

To prove this fact one needs only to show that Sn = Gn (compare 
with the solution to problem 54).

85a. -------- .
m +  n

b. Show that the desired probability Pk is independent of k. From
1

this it follows that Pk = ---------.

86. 1/3; 5/9.
87a. 1/5; 1/100. 

b. 1/5; 2/5.
88. 1/7; 91/144.
89. 1/4; 1/20.
90. log 2 (logarithms to the base 10). To prove this fact one must make 
use of the fact that among the powers of 2 having a given number of 
digits, exactly one will begin with the figure 1.
91a. Denote by M  the number formed by the given sequence of digits. 
One must show that for any M  there are two positive integers n and 
k such that lO^M ^  2" <  10\ M  +  1). Taking logarithms of this in
equality, we obtain:

The problem will be solved if n and k can be found which satisfy the 
latter inequality. We must therefore show that at least one of the points 
log 2, 2 log 2, 3 log 2, . . .  on the real line lies within one of the intervals 
[log M  +  k, log (M +  1) +  k), k =  1, 2, • • • .

b. log (1 +  1 /M) (logarithm to the base 10). Prove that the proba
bility of a randomly selected point n log 2 lying in one of the intervals indi
cated above equals the length of one of those intervals.

(2 n +  2){2r

m +  n

log M  +  k  ^  n log 2 <  log (M  + ! )  +  &.
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92. Show that the limit in question is

where 2, 3, 5, 7, 11, . . . are the prime numbers.
93. Expand 1/(1 — \/p2) into a geometric series 1 +  1 jp2 +  l//>4 +  \/p6 +  
• • • and use the fundamental theorem of arithmetic, s =  0.6 to within 0.1.
94. Show that if px, p2, . . . , p m are the first m primes, then

7t(N) 'il m +  N  — "AT " AT
- p j -Pm-

+
~ N  
-P1P2-

+  • • • +  ( - l ) m
N

-Pi ‘ ‘ ' Pm-I
It will be found convenient to throw away the brackets and make an 

estimate of the maximum error this can entail. Finally, assign a suitable 
value to m (depending on N).
95. 7/16. The set of all possible outcomes to the experiment is represented
here as the set of all points within or on the square 0 ^  1 , 0 ^ ^ ^  1,
where x and y  denote the arrival times of the first and second persons 
respectively and are used as rectangular coordinates.
96. 1/4.
97. The required probability equals

0 if 0 ^  a < Z/3,

^3 j  -  1J  if Z/3 ^  a ^  I/2,

1 -  3^1 -  j j  if Z/2 2S a £  I.

98. 1/4. (Compare with problem 96).
99. 1/2. Here all possible outcomes to the experiment are represented by 
the points of a cube.
100. 1 — (77-/4). (See the hint to the preceding problem.)












